Stabilisation de la K-théorie algébrique des espaces topologiques
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 16 (1983) no. 1, pp. 123-149.
@article{ASENS_1983_4_16_1_123_0,
     author = {Kassel, Christian},
     title = {Stabilisation de la $K$-th\'eorie alg\'ebrique des espaces topologiques},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {123--149},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 16},
     number = {1},
     year = {1983},
     doi = {10.24033/asens.1443},
     mrnumber = {85j:18010},
     zbl = {0515.18009},
     language = {fr},
     url = {http://www.numdam.org/articles/10.24033/asens.1443/}
}
TY  - JOUR
AU  - Kassel, Christian
TI  - Stabilisation de la $K$-théorie algébrique des espaces topologiques
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1983
SP  - 123
EP  - 149
VL  - 16
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.24033/asens.1443/
DO  - 10.24033/asens.1443
LA  - fr
ID  - ASENS_1983_4_16_1_123_0
ER  - 
%0 Journal Article
%A Kassel, Christian
%T Stabilisation de la $K$-théorie algébrique des espaces topologiques
%J Annales scientifiques de l'École Normale Supérieure
%D 1983
%P 123-149
%V 16
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.24033/asens.1443/
%R 10.24033/asens.1443
%G fr
%F ASENS_1983_4_16_1_123_0
Kassel, Christian. Stabilisation de la $K$-théorie algébrique des espaces topologiques. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 16 (1983) no. 1, pp. 123-149. doi : 10.24033/asens.1443. http://www.numdam.org/articles/10.24033/asens.1443/

[1] D. W. Anderson, Chain Functors and Homology Theories, Symp. Alg. Top., 1971, Springer (Lecture Notes in Math., n° 249, p. 1-12). | MR | Zbl

[2] A. K. Bousfield et D. M. Kan, Homotopy Limits, Completions and Localizations, Springer (Lecture Notes in Math., n° 304). | MR | Zbl

[3] E. Dror, A Generalization of Whitehead Theorem, Symp. Alg. Top., 1971, Springer (Lecture Notes in Math., n° 249, p. 13-22). | MR | Zbl

[4] W. Dwyer, Twisted Homological Stability for General Linear Groups (Ann. of Math., vol. 111, 1980, p. 239-251). | MR | Zbl

[5] T. Farrell et W. C. Hsiang, On the Rational Homotopy Groups of the Diffeomorphism Groups of Spheres, Discs and Aspherical Manifolds (Proc. Symp. Pure Math., vol. 32, 1978, I, p. 325-338). | Zbl

[6] W. Van Der Kallen, Homology Stability for Linear Groups (Inv. Math., vol. 60, 1980, p. 269-295). | MR | Zbl

[7] D. M. Kan, A Combinatorial Definition of Homotopy Groups (Ann. of Math., vol. 67, 1958, p. 282-312). | MR | Zbl

[8] C. Kassel, Un calcul d'homologie du groupe linéaire général (C.R. Acad. Sc., Paris, t. 288, 1979, p. 481-483). | MR | Zbl

[9] C. Kassel, Homologie du groupe linéaire général et K-théorie stable (C.R. Acad., Sc., Paris, t. 290, 1980, p. 1041-1044). | MR | Zbl

[10] C. Kassel, K-théorie relative d'un idéal bilatère de carré nul [Conf. Evanston, 1980, Springer (Lecture Notes in Math., n° 854, p. 249-261)]. | MR | Zbl

[11] C. Kassel, Le groupe K3(ℤ [ε]) n'a pas de p-torsion pour p≠2 et 3 [Conf. Oberwolfach 1980, Springer (Lecture Notes in Math.)]. | Zbl

[12] C. Kassel, Homologie du groupe linéaire général et K-théorie stable (Thèse d'État, Université Louis-Pasteur, Strasbourg, 1981).

[13] C. Kassel, Calcul algébrique de l'homologie de certains groupes de matrices (J. of Algebra, 1982, vol. 80, n° 1). | MR | Zbl

[14] C. Kassel, La K-théorie stable (Bull. S.M.F., vol. 110, 1982). | Numdam | MR | Zbl

[15] R. Lee et R. H. Szczarba, The Group K3 (ℤ) is Cyclic or Order 48 (Ann. of Math., vol. 104, 1976, p. 31-60). | MR | Zbl

[16] J.-L. Loday, K-théorie algébrique et représentations de groupes (Ann. scient. Ec. Norm. Sup., vol. 9, 1976, p. 309-377). | Numdam | MR | Zbl

[17] J.-L. Loday, Homotopie des espaces de concordances [Séminaire Bourbaki, n° 516, 1978, Springer (Lecture Notes, n° 710)]. | Numdam | Zbl

[18] J.-P. May, A∞-Ring Spaces and Algebraic K-Theory, Springer (Lect. Notes in Math., n° 658, II, p. 240-315). | MR | Zbl

[19] J. Milnor, Introduction to Algebraic K-theory (Ann. of Math., Studies n° 72, Princeton University Press, 1971). | MR | Zbl

[20] D. Quillen, Letter to J. Milnor, (July, 1972), Springer (Lecture Notes in Math., n° 551, p. 182-188). | MR | Zbl

[21] G. Segal, Categories and Cohomology Theories (Topology, vol. 13, 1974, p. 293-312). | MR | Zbl

[22] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens (Ann. of Math., vol. 58, 1953, p. 258-294). | MR | Zbl

[23] C. Soulé, Addendum à l'article "On the Torsion in K4 (ℤ) and K5(ℤ)" (Duke J., 1978, p. 131-132). | MR | Zbl

[24] M. Steinberger, On the Equivalence of the Two Definitions of the Algebraic K-Theory of a Topological Space, Springer (Lecture Notes in Math., n° 763). | MR | Zbl

[25] R. Steiner, Infinite Loop Structures on the Algebraic K-Theory of Spaces (Math. Proc. Camb. Phil. Soc., vol. 90, 1981, p. 85-111). | MR | Zbl

[26] H. Toda, p-Primary Components of Homotopy Groups IV : Composition and Toric Constructions (Memoirs, Univ. of Kyoto, vol. 32, 1959, p. 297-332). | MR | Zbl

[27] F. Waldhausen, Algebraic K-Theory of Topological Spaces I (Proc. Symp. Pure Math., vol. 32, 1978, p. 35-60). | MR | Zbl

[28] F. Waldhausen, Algebraic K-Theory of Topological Spaces II, Springer (Lecture Notes in Math., n° 763, p. 356-394). | MR | Zbl

[29] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978. | MR | Zbl

[30] J. H. C. Whitehead, A Certain Exact Sequence (Ann. of Math., vol. 52, 1951, p. 51-110). | MR | Zbl

Cité par Sources :