Nous étudions le maximum d’un champ Gaussien sur
We study the maximum of a Gaussian field on
@article{AIHPB_2015__51_4_1369_0, author = {Madaule, Thomas}, title = {Maximum of a log-correlated gaussian field}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1369--1431}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP633}, mrnumber = {3414451}, zbl = {1329.60138}, language = {en}, url = {https://www.numdam.org/articles/10.1214/14-AIHP633/} }
TY - JOUR AU - Madaule, Thomas TI - Maximum of a log-correlated gaussian field JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1369 EP - 1431 VL - 51 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/14-AIHP633/ DO - 10.1214/14-AIHP633 LA - en ID - AIHPB_2015__51_4_1369_0 ER -
Madaule, Thomas. Maximum of a log-correlated gaussian field. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1369-1431. doi : 10.1214/14-AIHP633. https://www.numdam.org/articles/10.1214/14-AIHP633/
[1] Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 (2013) 1362–1426. | DOI | MR | Zbl
.[2] The Seneta–Heyde scaling for the branching random walk. Ann. Probab. 42 (2014) 959–993. | DOI | MR | Zbl
and .[3] Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | DOI | MR | Zbl
, , and .[4] Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61 (1–2) (2010) 43–54. | MR | Zbl
and .
[5] Lognormal
[6] Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22 (2012) 1693–1711. | MR | Zbl
, and .[7] Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011) 1647–1676. | DOI | MR | Zbl
, and .[8] The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | DOI | MR | Zbl
, and .[9] Poisson–Dirichlet statistics for the extremes of a log-correlated Gaussian field. Ann. Appl. Probab. 24 (2014) 1446–1481. | MR | Zbl
and .[10] J. Barral, A. Kupiainen, M. Nikula, E. Saksman and C. Webb Basic properties of critical lognormal multiplicative chaos. Preprint, 2013. Available at arXiv:1303.4548. | MR
[11] Limiting laws of supercritical branching random walks. C. R. Math. Acad. Sci. Paris 350 (2012) 535–538. | DOI | MR | Zbl
, and .[12] Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. | DOI | MR | Zbl
.[13] Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. | MR | Zbl
, and .[14] Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field. Electron. Commun. Probab. 16 (2011) 114–119. | DOI | MR | Zbl
, and .[15] Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29 (4) (2001) 1670–1692. | MR | Zbl
, and .[16] Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Preprint, 2013. Available at arXiv:1301.6669.
, and .[17] Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math. 65 (2012) 1–20. | DOI | MR | Zbl
and .[18] Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. Phys. Rev. E (3) 63 (2001) 026110.
and .[19] Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 (2014) 1769–1808. | DOI | MR | Zbl
, , and .[20] Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys. 330 (2014) 283–330. | DOI | MR | Zbl
, , and .[21] Regularité des trajectoires des fonctions aléatoires gaussiennes. In École d’Été de Probabilités de Saint-Flour IV – 1974 1–96. Lecture Notes in Math. 480. Springer, Berlin, 1975. | MR | Zbl
.[22] Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (2) (1985) 105–150. | MR | Zbl
.[23] Convergence in law for the branching random walk seen from its tip. Preprint, 2011. Available at arXiv:1107.2543v4. | MR
.[24] Local sample path properties of Gaussian fields. Ann. Probab. 7 (3) (1979) 477–493. | MR | Zbl
and .[25] Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. | MR | Zbl
and .- The extremal landscape for the C
E ensemble, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.129 - Temporal Hölder continuity of the parabolic Anderson model driven by a class of time-independent Gaussian fields with rough initial conditions, AIMS Mathematics, Volume 9 (2024) no. 12, p. 34838 | DOI:10.3934/math.20241659
- Spatial Hölder continuity for the parabolic Anderson model with the singular initial conditions, Journal of Mathematical Physics, Volume 65 (2024) no. 11 | DOI:10.1063/5.0172994
- Critical Gaussian multiplicative chaos for singular measures, Stochastic Processes and their Applications, Volume 175 (2024), p. 104388 | DOI:10.1016/j.spa.2024.104388
- Almost Surely Time-Space Intermittency for the Parabolic Anderson Model with a Log-Correlated Gaussian Field, Acta Mathematica Scientia, Volume 43 (2023) no. 2, p. 608 | DOI:10.1007/s10473-023-0209-1
- A universality result for subcritical complex Gaussian multiplicative chaos, The Annals of Applied Probability, Volume 32 (2022) no. 1 | DOI:10.1214/21-aap1677
- Maximum and coupling of the sine-Gordon field, The Annals of Probability, Volume 50 (2022) no. 2 | DOI:10.1214/21-aop1537
- How much can the eigenvalues of a random Hermitian matrix fluctuate?, Duke Mathematical Journal, Volume 170 (2021) no. 9 | DOI:10.1215/00127094-2020-0070
- Steep Points of Gaussian Free Fields in Any Dimension, Journal of Theoretical Probability, Volume 34 (2021) no. 4, p. 1959 | DOI:10.1007/s10959-020-01028-7
- Critical Brownian multiplicative chaos, Probability Theory and Related Fields, Volume 180 (2021) no. 1-2, p. 495 | DOI:10.1007/s00440-021-01051-7
- On the Riemann Zeta Function and Gaussian Multiplicative Chaos, Advancements in Complex Analysis (2020), p. 473 | DOI:10.1007/978-3-030-40120-7_12
- Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field, Communications in Mathematical Physics, Volume 373 (2020) no. 1, p. 45 | DOI:10.1007/s00220-019-03589-z
- Conformal Symmetries in the Extremal Process of Two-Dimensional Discrete Gaussian Free Field, Communications in Mathematical Physics, Volume 375 (2020) no. 1, p. 175 | DOI:10.1007/s00220-020-03698-0
- Subsequential Scaling Limits for Liouville Graph Distance, Communications in Mathematical Physics, Volume 376 (2020) no. 2, p. 1499 | DOI:10.1007/s00220-020-03684-6
- Extrema of the Two-Dimensional Discrete Gaussian Free Field, Random Graphs, Phase Transitions, and the Gaussian Free Field, Volume 304 (2020), p. 163 | DOI:10.1007/978-3-030-32011-9_3
- Precise high moment asymptotics for parabolic Anderson model with log-correlated Gaussian field, Statistics Probability Letters, Volume 158 (2020), p. 108662 | DOI:10.1016/j.spl.2019.108662
- Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model, The Annals of Applied Probability, Volume 30 (2020) no. 5 | DOI:10.1214/19-aap1553
- The maximum of the four-dimensional membrane model, The Annals of Probability, Volume 48 (2020) no. 2 | DOI:10.1214/19-aop1372
- Upper Bounds on Liouville First‐Passage Percolation and Watabiki's Prediction, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 11, p. 2331 | DOI:10.1002/cpa.21846
- Localization of the Gaussian multiplicative chaos in the Wiener space and the stochastic heat equation in strong disorder, The Annals of Applied Probability, Volume 29 (2019) no. 6 | DOI:10.1214/19-aap1491
- Decompositions of log-correlated fields with applications, The Annals of Applied Probability, Volume 29 (2019) no. 6 | DOI:10.1214/19-aap1492
- 1-stable fluctuations in branching Brownian motion at critical temperature I: The derivative martingale, The Annals of Probability, Volume 47 (2019) no. 5 | DOI:10.1214/18-aop1329
- A Theory of Intermittency Differentiation of 1D Infinitely Divisible Multiplicative Chaos Measures, Annales Henri Poincaré, Volume 19 (2018) no. 4, p. 1043 | DOI:10.1007/s00023-018-0656-8
- Thick points of high-dimensional Gaussian free fields, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 3 | DOI:10.1214/17-aihp846
- The minimum of a branching random walk outside the boundary case, Bernoulli, Volume 24 (2018) no. 2 | DOI:10.3150/15-bej784
- On the maximum of the CβE field, Duke Mathematical Journal, Volume 167 (2018) no. 12 | DOI:10.1215/00127094-2018-0016
- The Maximum of the CUE Field, International Mathematics Research Notices, Volume 2018 (2018) no. 16, p. 5028 | DOI:10.1093/imrn/rnx033
- Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields, Probability Theory and Related Fields, Volume 171 (2018) no. 3-4, p. 1157 | DOI:10.1007/s00440-017-0811-z
- On the extreme values of the Riemann zeta function on random intervals of the critical line, Probability Theory and Related Fields, Volume 172 (2018) no. 1-2, p. 387 | DOI:10.1007/s00440-017-0812-y
- A review of conjectured laws of total mass of Bacry–Muzy GMC measures on the interval and circle and their applications, Reviews in Mathematical Physics, Volume 30 (2018) no. 10, p. 1830003 | DOI:10.1142/s0129055x18300030
- Hole probability for nodal sets of the cut-off Gaussian Free Field, Advances in Mathematics, Volume 319 (2017), p. 1 | DOI:10.1016/j.aim.2017.08.002
- Maximum of the Characteristic Polynomial of Random Unitary Matrices, Communications in Mathematical Physics, Volume 349 (2017) no. 2, p. 703 | DOI:10.1007/s00220-016-2740-6
- The Largest Fragment of a Homogeneous Fragmentation Process, Journal of Statistical Physics, Volume 166 (2017) no. 5, p. 1226 | DOI:10.1007/s10955-017-1714-1
- The extremal process of critical points of the pure p-spin spherical spin glass model, Probability Theory and Related Fields, Volume 168 (2017) no. 3-4, p. 773 | DOI:10.1007/s00440-016-0724-2
- Maxima of a randomized Riemann zeta function, and branching random walks, The Annals of Applied Probability, Volume 27 (2017) no. 1 | DOI:10.1214/16-aap1201
- Convergence of the centered maximum of log-correlated Gaussian fields, The Annals of Probability, Volume 45 (2017) no. 6A | DOI:10.1214/16-aop1152
- On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field, Journal of Statistical Physics, Volume 164 (2016) no. 6, p. 1292 | DOI:10.1007/s10955-016-1591-z
- Glassy phase and freezing of log-correlated Gaussian potentials, The Annals of Applied Probability, Volume 26 (2016) no. 2 | DOI:10.1214/14-aap1071
- The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - The
-phase, Electronic Journal of Probability, Volume 20 (2015) no. none | DOI:10.1214/ejp.v20-4296 - Some superconcentration inequalities for extrema of stationary Gaussian processes, Statistics Probability Letters, Volume 106 (2015), p. 239 | DOI:10.1016/j.spl.2015.07.028
- On multiple peaks and moderate deviations for the supremum of a Gaussian field, The Annals of Probability, Volume 43 (2015) no. 6 | DOI:10.1214/14-aop963
- Tightness of the recentered maximum of log-correlated Gaussian fields, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-3170
Cité par 42 documents. Sources : Crossref