Maximum of a log-correlated gaussian field
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1369-1431.

Nous étudions le maximum d’un champ Gaussien sur [0,1]𝚍 (𝚍1) dont les corrélations décroissent logarithmiquement avec la distance. Kahane (Ann. Sci. Math. Québec 9 (1985) 105–150) a introduit ce modèle pour construire mathématiquement le chaos Gaussien multiplicatif dans le cas sous-critique. Duplantier, Rhodes, Sheffield et Vargas (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint, Renormalization of critical Gaussian multiplicative chaos and KPZ formula (2012) Preprint) ont étendu cette construction au cas critique et ont établi la formule KPZ. De plus, dans (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint), ils fournissent plusieurs conjectures sur le cas sur-critique ainsi que sur le maximum de ce champ Gaussien. Dans ce papier nous établissons la convergence en loi du maximum et montrons que loi limite est une variable aléatoire de Gumbel convoluée avec la limite de la martingale dérivée, résolvant ainsi la Conjecture 12 de (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint).

We study the maximum of a Gaussian field on [0,1]𝚍 (𝚍1) whose correlations decay logarithmically with the distance. Kahane (Ann. Sci. Math. Québec 9 (1985) 105–150) introduced this model to construct mathematically the Gaussian multiplicative chaos in the subcritical case. Duplantier, Rhodes, Sheffield and Vargas (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint, Renormalization of critical Gaussian multiplicative chaos and KPZ formula (2012) Preprint) extended Kahane’s construction to the critical case and established the KPZ formula at criticality. Moreover, they made in (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint) several conjectures on the supercritical case and on the maximum of this Gaussian field. In this paper we resolve Conjecture 12 in (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint): we establish the convergence in law of the maximum and show that the limit law is the Gumbel distribution convoluted by the limit of the derivative martingale.

DOI : 10.1214/14-AIHP633
Mots-clés : gaussian multiplicative chaos, log-correlated gaussian field, minimal position, Gumbel distribution
@article{AIHPB_2015__51_4_1369_0,
     author = {Madaule, Thomas},
     title = {Maximum of a log-correlated gaussian field},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1369--1431},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {4},
     year = {2015},
     doi = {10.1214/14-AIHP633},
     mrnumber = {3414451},
     zbl = {1329.60138},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/14-AIHP633/}
}
TY  - JOUR
AU  - Madaule, Thomas
TI  - Maximum of a log-correlated gaussian field
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 1369
EP  - 1431
VL  - 51
IS  - 4
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/14-AIHP633/
DO  - 10.1214/14-AIHP633
LA  - en
ID  - AIHPB_2015__51_4_1369_0
ER  - 
%0 Journal Article
%A Madaule, Thomas
%T Maximum of a log-correlated gaussian field
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 1369-1431
%V 51
%N 4
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/14-AIHP633/
%R 10.1214/14-AIHP633
%G en
%F AIHPB_2015__51_4_1369_0
Madaule, Thomas. Maximum of a log-correlated gaussian field. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1369-1431. doi : 10.1214/14-AIHP633. https://www.numdam.org/articles/10.1214/14-AIHP633/

[1] E. Aïdékon. Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 (2013) 1362–1426. | DOI | MR | Zbl

[2] E. Aïdékon and Z. Shi. The Seneta–Heyde scaling for the branching random walk. Ann. Probab. 42 (2014) 959–993. | DOI | MR | Zbl

[3] E. Aïdékon, J. Berestycki, É. Brunet and Z. Shi. Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | DOI | MR | Zbl

[4] E. Aïdékon and Z. Shi. Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61 (1–2) (2010) 43–54. | MR | Zbl

[5] R. Allez, R. Rhodes and V. Vargas. Lognormal -scale invariant random measures. Probab. Theory Related Fields 155 (2013) 751–788. | DOI | MR | Zbl

[6] L.-P. Arguin, A. Bovier and N. Kistler. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22 (2012) 1693–1711. | MR | Zbl

[7] L.-P. Arguin, A. Bovier and N. Kistler. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011) 1647–1676. | DOI | MR | Zbl

[8] L.-P. Arguin, A. Bovier and N. Kistler. The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | DOI | MR | Zbl

[9] L.-P. Arguin and O. Zindy. Poisson–Dirichlet statistics for the extremes of a log-correlated Gaussian field. Ann. Appl. Probab. 24 (2014) 1446–1481. | MR | Zbl

[10] J. Barral, A. Kupiainen, M. Nikula, E. Saksman and C. Webb Basic properties of critical lognormal multiplicative chaos. Preprint, 2013. Available at arXiv:1303.4548. | MR

[11] J. Barral, R. Rhodes and V. Vargas. Limiting laws of supercritical branching random walks. C. R. Math. Acad. Sci. Paris 350 (2012) 535–538. | DOI | MR | Zbl

[12] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. | DOI | MR | Zbl

[13] C. M. Bingham, N. H. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. | MR | Zbl

[14] E. Bolthausen, J.-D. Deuschel and O. Zeitouni. Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field. Electron. Commun. Probab. 16 (2011) 114–119. | DOI | MR | Zbl

[15] J.-D. Bolthausen, J.-D. Deuschel and G. Giacomin. Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29 (4) (2001) 1670–1692. | MR | Zbl

[16] M. Bramson, J. Ding and O. Zeitouni. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Preprint, 2013. Available at arXiv:1301.6669.

[17] M. Bramson and O. Zeitouni. Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math. 65 (2012) 1–20. | DOI | MR | Zbl

[18] D. Carpentier and P. Le Doussal. Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. Phys. Rev. E (3) 63 (2001) 026110.

[19] B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 (2014) 1769–1808. | DOI | MR | Zbl

[20] B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys. 330 (2014) 283–330. | DOI | MR | Zbl

[21] X. Fernique. Regularité des trajectoires des fonctions aléatoires gaussiennes. In École d’Été de Probabilités de Saint-Flour IV – 1974 1–96. Lecture Notes in Math. 480. Springer, Berlin, 1975. | MR | Zbl

[22] J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (2) (1985) 105–150. | MR | Zbl

[23] T. Madaule. Convergence in law for the branching random walk seen from its tip. Preprint, 2011. Available at arXiv:1107.2543v4. | MR

[24] L. D. Pitt and L. T. Tran. Local sample path properties of Gaussian fields. Ann. Probab. 7 (3) (1979) 477–493. | MR | Zbl

[25] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. | MR | Zbl

  • Paquette, Elliot; Zeitouni, Ofer The extremal landscape for the C β E ensemble, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.129
  • Sun, Hui; Lyu, Yangyang Temporal Hölder continuity of the parabolic Anderson model driven by a class of time-independent Gaussian fields with rough initial conditions, AIMS Mathematics, Volume 9 (2024) no. 12, p. 34838 | DOI:10.3934/math.20241659
  • Lyu, Yangyang; Sun, Hui Spatial Hölder continuity for the parabolic Anderson model with the singular initial conditions, Journal of Mathematical Physics, Volume 65 (2024) no. 11 | DOI:10.1063/5.0172994
  • Lacoin, Hubert Critical Gaussian multiplicative chaos for singular measures, Stochastic Processes and their Applications, Volume 175 (2024), p. 104388 | DOI:10.1016/j.spa.2024.104388
  • Lyu, Yangyang; Li, Heyu Almost Surely Time-Space Intermittency for the Parabolic Anderson Model with a Log-Correlated Gaussian Field, Acta Mathematica Scientia, Volume 43 (2023) no. 2, p. 608 | DOI:10.1007/s10473-023-0209-1
  • Lacoin, Hubert A universality result for subcritical complex Gaussian multiplicative chaos, The Annals of Applied Probability, Volume 32 (2022) no. 1 | DOI:10.1214/21-aap1677
  • Bauerschmidt, Roland; Hofstetter, Michael Maximum and coupling of the sine-Gordon field, The Annals of Probability, Volume 50 (2022) no. 2 | DOI:10.1214/21-aop1537
  • Claeys, T.; Fahs, B.; Lambert, G.; Webb, C. How much can the eigenvalues of a random Hermitian matrix fluctuate?, Duke Mathematical Journal, Volume 170 (2021) no. 9 | DOI:10.1215/00127094-2020-0070
  • Chen, Linan Steep Points of Gaussian Free Fields in Any Dimension, Journal of Theoretical Probability, Volume 34 (2021) no. 4, p. 1959 | DOI:10.1007/s10959-020-01028-7
  • Jego, Antoine Critical Brownian multiplicative chaos, Probability Theory and Related Fields, Volume 180 (2021) no. 1-2, p. 495 | DOI:10.1007/s00440-021-01051-7
  • Saksman, Eero; Webb, Christian On the Riemann Zeta Function and Gaussian Multiplicative Chaos, Advancements in Complex Analysis (2020), p. 473 | DOI:10.1007/978-3-030-40120-7_12
  • Biskup, Marek; Ding, Jian; Goswami, Subhajit Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field, Communications in Mathematical Physics, Volume 373 (2020) no. 1, p. 45 | DOI:10.1007/s00220-019-03589-z
  • Biskup, Marek; Louidor, Oren Conformal Symmetries in the Extremal Process of Two-Dimensional Discrete Gaussian Free Field, Communications in Mathematical Physics, Volume 375 (2020) no. 1, p. 175 | DOI:10.1007/s00220-020-03698-0
  • Ding, Jian; Dunlap, Alexander Subsequential Scaling Limits for Liouville Graph Distance, Communications in Mathematical Physics, Volume 376 (2020) no. 2, p. 1499 | DOI:10.1007/s00220-020-03684-6
  • Biskup, Marek Extrema of the Two-Dimensional Discrete Gaussian Free Field, Random Graphs, Phase Transitions, and the Gaussian Free Field, Volume 304 (2020), p. 163 | DOI:10.1007/978-3-030-32011-9_3
  • Lyu, Yangyang Precise high moment asymptotics for parabolic Anderson model with log-correlated Gaussian field, Statistics Probability Letters, Volume 158 (2020), p. 108662 | DOI:10.1016/j.spl.2019.108662
  • Junnila, Janne; Saksman, Eero; Webb, Christian Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model, The Annals of Applied Probability, Volume 30 (2020) no. 5 | DOI:10.1214/19-aap1553
  • Schweiger, Florian The maximum of the four-dimensional membrane model, The Annals of Probability, Volume 48 (2020) no. 2 | DOI:10.1214/19-aop1372
  • Ding, Jian; Goswami, Subhajit Upper Bounds on Liouville First‐Passage Percolation and Watabiki's Prediction, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 11, p. 2331 | DOI:10.1002/cpa.21846
  • Bröker, Yannic; Mukherjee, Chiranjib Localization of the Gaussian multiplicative chaos in the Wiener space and the stochastic heat equation in strong disorder, The Annals of Applied Probability, Volume 29 (2019) no. 6 | DOI:10.1214/19-aap1491
  • Junnila, Janne; Saksman, Eero; Webb, Christian Decompositions of log-correlated fields with applications, The Annals of Applied Probability, Volume 29 (2019) no. 6 | DOI:10.1214/19-aap1492
  • Maillard, Pascal; Pain, Michel 1-stable fluctuations in branching Brownian motion at critical temperature I: The derivative martingale, The Annals of Probability, Volume 47 (2019) no. 5 | DOI:10.1214/18-aop1329
  • Ostrovsky, Dmitry A Theory of Intermittency Differentiation of 1D Infinitely Divisible Multiplicative Chaos Measures, Annales Henri Poincaré, Volume 19 (2018) no. 4, p. 1043 | DOI:10.1007/s00023-018-0656-8
  • Chen, Linan Thick points of high-dimensional Gaussian free fields, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 3 | DOI:10.1214/17-aihp846
  • Barral, Julien; Hu, Yueyun; Madaule, Thomas The minimum of a branching random walk outside the boundary case, Bernoulli, Volume 24 (2018) no. 2 | DOI:10.3150/15-bej784
  • Chhaibi, Reda; Madaule, Thomas; Najnudel, Joseph On the maximum of the CβE field, Duke Mathematical Journal, Volume 167 (2018) no. 12 | DOI:10.1215/00127094-2018-0016
  • Paquette, Elliot; Zeitouni, Ofer The Maximum of the CUE Field, International Mathematics Research Notices, Volume 2018 (2018) no. 16, p. 5028 | DOI:10.1093/imrn/rnx033
  • Ding, Jian; Zhang, Fuxi Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields, Probability Theory and Related Fields, Volume 171 (2018) no. 3-4, p. 1157 | DOI:10.1007/s00440-017-0811-z
  • Najnudel, Joseph On the extreme values of the Riemann zeta function on random intervals of the critical line, Probability Theory and Related Fields, Volume 172 (2018) no. 1-2, p. 387 | DOI:10.1007/s00440-017-0812-y
  • Ostrovsky, Dmitry A review of conjectured laws of total mass of Bacry–Muzy GMC measures on the interval and circle and their applications, Reviews in Mathematical Physics, Volume 30 (2018) no. 10, p. 1830003 | DOI:10.1142/s0129055x18300030
  • Rivera, Alejandro Hole probability for nodal sets of the cut-off Gaussian Free Field, Advances in Mathematics, Volume 319 (2017), p. 1 | DOI:10.1016/j.aim.2017.08.002
  • Arguin, Louis-Pierre; Belius, David; Bourgade, Paul Maximum of the Characteristic Polynomial of Random Unitary Matrices, Communications in Mathematical Physics, Volume 349 (2017) no. 2, p. 703 | DOI:10.1007/s00220-016-2740-6
  • Kyprianou, Andreas; Lane, Francis; Mörters, Peter The Largest Fragment of a Homogeneous Fragmentation Process, Journal of Statistical Physics, Volume 166 (2017) no. 5, p. 1226 | DOI:10.1007/s10955-017-1714-1
  • Subag, Eliran; Zeitouni, Ofer The extremal process of critical points of the pure p-spin spherical spin glass model, Probability Theory and Related Fields, Volume 168 (2017) no. 3-4, p. 773 | DOI:10.1007/s00440-016-0724-2
  • Arguin, Louis-Pierre; Belius, David; Harper, Adam J. Maxima of a randomized Riemann zeta function, and branching random walks, The Annals of Applied Probability, Volume 27 (2017) no. 1 | DOI:10.1214/16-aap1201
  • Ding, Jian; Roy, Rishideep; Zeitouni, Ofer Convergence of the centered maximum of log-correlated Gaussian fields, The Annals of Probability, Volume 45 (2017) no. 6A | DOI:10.1214/16-aop1152
  • Ostrovsky, Dmitry On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field, Journal of Statistical Physics, Volume 164 (2016) no. 6, p. 1292 | DOI:10.1007/s10955-016-1591-z
  • Madaule, Thomas; Rhodes, Rémi; Vargas, Vincent Glassy phase and freezing of log-correlated Gaussian potentials, The Annals of Applied Probability, Volume 26 (2016) no. 2 | DOI:10.1214/14-aap1071
  • Webb, Christian The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - The L2-phase, Electronic Journal of Probability, Volume 20 (2015) no. none | DOI:10.1214/ejp.v20-4296
  • Tanguy, Kevin Some superconcentration inequalities for extrema of stationary Gaussian processes, Statistics Probability Letters, Volume 106 (2015), p. 239 | DOI:10.1016/j.spl.2015.07.028
  • Ding, Jian; Eldan, Ronen; Zhai, Alex On multiple peaks and moderate deviations for the supremum of a Gaussian field, The Annals of Probability, Volume 43 (2015) no. 6 | DOI:10.1214/14-aop963
  • Acosta, Javier Tightness of the recentered maximum of log-correlated Gaussian fields, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-3170

Cité par 42 documents. Sources : Crossref