Nous étudions l’existence et la caractérisation de la limite de marches branchantes critiques dans un environnement spatio-temporel aléatoire en dimension 1 introduit par Birkner, Geiger and Kersting dans (In Interacting Stochastic Systems (2005) 269–291 Springer). Chaque particule effectue une marche aléatoire simple sur et le mécanisme de branchement dépend du site indexé par l’espace et le temps. La limite de ce processus à valeur mesure est caractérisée comme l’unique solution d’un problème de martingale non-trivial et correspond au super mouvement Brownien en environnement aléatoire par Mytnik dans (Ann. Probab. 24 (1996) 1953–1978).
We focus on the existence and characterization of the limit for a certain critical branching random walks in time–space random environment in one dimension which was introduced by Birkner, Geiger and Kersting in (In Interacting Stochastic Systems (2005) 269–291 Springer). Each particle performs simple random walk on and branching mechanism depends on the time–space site. The limit of this measure-valued processes is characterized as the unique solution to the non-trivial martingale problem and called super-Brownian motion in a random environment by Mytnik in (Ann. Probab. 24 (1996) 1953–1978).
@article{AIHPB_2015__51_4_1251_0, author = {Nakashima, Makoto}, title = {Branching random walks in random environment and super-brownian motion in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1251--1289}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP620}, mrnumber = {3414447}, zbl = {1329.60358}, language = {en}, url = {http://www.numdam.org/articles/10.1214/14-AIHP620/} }
TY - JOUR AU - Nakashima, Makoto TI - Branching random walks in random environment and super-brownian motion in random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1251 EP - 1289 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/14-AIHP620/ DO - 10.1214/14-AIHP620 LA - en ID - AIHPB_2015__51_4_1251_0 ER -
%0 Journal Article %A Nakashima, Makoto %T Branching random walks in random environment and super-brownian motion in random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1251-1289 %V 51 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/14-AIHP620/ %R 10.1214/14-AIHP620 %G en %F AIHPB_2015__51_4_1251_0
Nakashima, Makoto. Branching random walks in random environment and super-brownian motion in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1251-1289. doi : 10.1214/14-AIHP620. http://www.numdam.org/articles/10.1214/14-AIHP620/
[1] Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 (3) (1997) 571–607. | MR | Zbl
and .[2] Branching processes in random environment: A view on critical and subcritical cases. In Interacting Stochastic Systems 269–291. Springer, Berlin, 2005. | MR | Zbl
, and .[3] Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19–42. | DOI | MR | Zbl
.[4] Stochastic evolution equations and related measure processes. J. Multivariate Anal. 5 (1) (1975) 1–52. | MR | Zbl
.[5] Geostochastic calculus. Canad. J. Statist. 6 (2) (1978) 143–168. | MR | Zbl
.[6] Measure-valued Markov processes. In École d’Été de Probabilités de Saint-Flour XXI – 1991 1–260. Lecture Notes in Math. 1541. Springer, Berlin, 1993. | MR | Zbl
.[7] Historical Processes. Mem. Amer. Math. Soc. 93 No. 454. Amer. Math. Soc., Providence, RI, 1991. | DOI | MR | Zbl
and .[8] Diffusions, Superdiffusions and Partial Differential Equations. American Mathematical Society Colloquium Publications 50. Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl
.[9] Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations. University Lecture Series 34. Amer. Math. Soc., Providence, RI, 2004. Appendix A by J.-F. Le Gall and Appendix B by I. E. Verbitsky. | MR | Zbl
.[10] An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI, 2000. | DOI | MR | Zbl
.[11] Markov Processes: Characterization and Convergence. Wiley, Hoboken, NJ, 2009. | MR | Zbl
and .[12] A remark on localization for branching random walks in random environment. Electron. Commun. Probab. 16 (2011) 323–336. | DOI | MR | Zbl
and .[13] Branching random walks in random environment are diffusive in the regular growth phase. Electron. J. Probab. 16 (2011) 1318–1340. | DOI | MR | Zbl
, and .[14] Stochastic partial differential equations for some measure-valued diffusions. Probab. Theory Related Fields 79 (2) (1988) 201–225. | MR | Zbl
and .[15] Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1999. | MR | Zbl
.[16] The packing measure of the support of super-Brownian motion. Stochastic Process. Appl. 59 (1) (1995) 1–20. | MR | Zbl
, and .[17] Nonuniqueness for a parabolic SPDE with --Hölder diffusion coefficients. Ann. Probab. 42 (2014) 2032–2112. | DOI | MR | Zbl
, and .[18] The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fields 44 (1992) 325–358. | DOI | MR | Zbl
and .[19] Superprocesses in random environments. Ann. Probab. 24 (4) (1996) 1953–1978. | MR | Zbl
.[20] Weak uniqueness for the heat equation with noise. Ann. Probab. 26 (3) (1998) 968–984. | MR | Zbl
.[21] Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: The white noise case. Probab. Theory Related Fields 149 (1–2) (2011) 1–96. | MR | Zbl
and .[22] Almost sure central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 21 (1) (2011) 351–373. | MR | Zbl
.[23] A space–time property of a class of measure-valued branching diffusions. Trans. Amer. Math. Soc. 305 (2) (1988) 743–795. | MR | Zbl
.[24] The Hausdorff measure of the closed support of super-Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 25 (2) (1989) 205–224. | Numdam | MR | Zbl
.[25] Part II: Dawson–Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics 125–329. Springer, Berlin, 2002. | MR | Zbl
.[26] One dimensional stochastic partial differential equations and the branching measure diffusion. Probab. Theory Related Fields 81 (3) (1989) 319–340. | MR | Zbl
.[27] Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (2) (1994) 415–437. | MR | Zbl
.[28] Central limit theorem for branching Brownian motions in random environment. J. Stat. Phys. 136 (1) (2009) 145–163. | MR | Zbl
.[29] Localization for branching Brownian motions in random environment. Tohoku Math. J. (2) 61 (4) (2009) 483–497. | MR | Zbl
.[30] A limit theorem of branching processes and continuous state branching processes. Kyoto J. Math. 8 (1) (1968) 141–167. | MR | Zbl
.[31] Central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 18 (4) (2008) 1619–1635. | MR | Zbl
.Cité par Sources :