Nous considérons un mouvement brownien branchant avec absorption critique, issu d’une particule en
We consider critical branching Brownian motion with absorption, in which there is initially a single particle at
@article{AIHPB_2015__51_4_1215_0, author = {Berestycki, Julien and Berestycki, Nathana\"el and Schweinsberg, Jason}, title = {Critical branching brownian motion with absorption: {Particle} configurations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1215--1250}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP613}, mrnumber = {3414446}, zbl = {1329.60300}, language = {en}, url = {https://www.numdam.org/articles/10.1214/14-AIHP613/} }
TY - JOUR AU - Berestycki, Julien AU - Berestycki, Nathanaël AU - Schweinsberg, Jason TI - Critical branching brownian motion with absorption: Particle configurations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1215 EP - 1250 VL - 51 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/14-AIHP613/ DO - 10.1214/14-AIHP613 LA - en ID - AIHPB_2015__51_4_1215_0 ER -
%0 Journal Article %A Berestycki, Julien %A Berestycki, Nathanaël %A Schweinsberg, Jason %T Critical branching brownian motion with absorption: Particle configurations %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1215-1250 %V 51 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/14-AIHP613/ %R 10.1214/14-AIHP613 %G en %F AIHPB_2015__51_4_1215_0
Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Critical branching brownian motion with absorption: Particle configurations. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1215-1250. doi : 10.1214/14-AIHP613. https://www.numdam.org/articles/10.1214/14-AIHP613/
[1] Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | DOI | MR | Zbl
, , and .[2] The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | DOI | MR | Zbl
, and .[3] Quasi-stationary distributions and Fleming–Viot processes in finite spaces. J. Appl. Probab. 48 (2011) 322–332. | DOI | MR | Zbl
, and .[4] Fleming–Viot selects the minimal quasi-stationary distribution: The Galton–Watson case. Ann. Inst. Henri Poincaré. To appear, 2015. Available at arXiv:1206.6114. | MR | Zbl
, , and .[5] The genealogy of branching Brownian motion with absorption. Ann. Probab. 41 (2013) 527–618. | DOI | MR | Zbl
, and .[6] Critical branching Brownian motion with absorption: Survival probability. Probab. Theory Related Fields 160 (2014) 489–520. | DOI | MR | Zbl
, and .[7] Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (285) (1983) iv+190. | DOI | MR | Zbl
.[8] Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76 (2006) 1–7. | DOI | MR
, , and .[9] Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 (2007) 041104. | MR
, , and .[10] Configurational transition in a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A: Math. Gen. 29 (1996) 2633–2642. | Zbl
, , and .[11] A Fleming–Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214 (2000) 679–703. | DOI | MR | Zbl
, and .[12] Hydrodynamic limit for a Fleming–Viot type system. Stochastic Process. Appl. 110 (2004) 111–143. | DOI | MR | Zbl
and .[13] Immortal particle for a catalytic branching process. Probab. Theory Related Fields 153 (2011) 333–361. | DOI | MR | Zbl
and .[14] A short proof of the logarithmic Bramson correction in Fisher–KPP equations. Netw. Heterog. Media 8 (2013) 275–289. | DOI | MR | Zbl
, , and .[15] The logarithmic delay of KPP fronts in a periodic medium. Preprint, arXiv:1211.6173. | DOI | MR | Zbl
, , and .[16] Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81–92. | DOI | MR | Zbl
and .[17] Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One-sided traveling waves. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 125–145. | DOI | Numdam | MR | Zbl
, and .[18] The unscaled paths of branching Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 579–608. | DOI | Numdam | MR | Zbl
and .[19] Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. | DOI | MR | Zbl
.[20] Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1978) 9–47. | DOI | MR | Zbl
.[21] On the maximal displacement of a critical branching random walk. Probab. Theory Related Fields 162 (2015) 71–96. | DOI | MR | Zbl
and .
[22] Speed and fluctuations of
[23] Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 223–241. E. Çinlar, K. L. Chung and R. K. Getoor (Eds). Prog. Probab. Statist. 15. Birkhäuser, Boston, 1988. | MR | Zbl
.[24] Branching diffusion processes in population genetics. Adv. in Appl. Probab. 8 (1976) 659–689. | DOI | MR | Zbl
.[25] Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (4) (1994) 911–920. | MR | Zbl
and .[26] Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 (1947) 795–798. | MR | Zbl
.Cité par Sources :