Dans cet article, nous obtenons des taux de convergence pour les vecteurs de densité dans le modèle de Curie–Weiss–Potts via la méthode de Stein des paires échangeables. Nos résultats incluent des bornes de Kolmogorov pour l’approximation normale multivariée dans tout le domaine et , où est l’inverse de la température et un champ extérieur. Dans ce modèle, la ligne critique est explicitement connue et correspond à une transition du premier ordre. Nous incluons des taux de convergence pour des approximations non-gaussiennes au bord de la ligne critique du modèle.
In the present paper we obtain rates of convergence for the limit theorems of the density vector in the Curie–Weiss–Potts model via Stein’s Method of exchangeable pairs. Our results include Kolmogorov bounds for multivariate normal approximation in the whole domain and , where is the inverse temperature and an exterior field. In this model, the critical line is explicitly known and corresponds to a first order transition. We include rates of convergence for non-Gaussian approximations at the extremity of the critical line of the model.
Mots clés : Stein’s method, exchangeable pairs, Curie–Weiss–Potts models, critical temperature
@article{AIHPB_2015__51_1_252_0, author = {Eichelsbacher, Peter and Martschink, Bastian}, title = {On rates of convergence in the {Curie{\textendash}Weiss{\textendash}Potts} model with an external field}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {252--282}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/14-AIHP599}, mrnumber = {3300970}, zbl = {1321.60038}, language = {en}, url = {http://www.numdam.org/articles/10.1214/14-AIHP599/} }
TY - JOUR AU - Eichelsbacher, Peter AU - Martschink, Bastian TI - On rates of convergence in the Curie–Weiss–Potts model with an external field JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 252 EP - 282 VL - 51 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/14-AIHP599/ DO - 10.1214/14-AIHP599 LA - en ID - AIHPB_2015__51_1_252_0 ER -
%0 Journal Article %A Eichelsbacher, Peter %A Martschink, Bastian %T On rates of convergence in the Curie–Weiss–Potts model with an external field %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 252-282 %V 51 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/14-AIHP599/ %R 10.1214/14-AIHP599 %G en %F AIHPB_2015__51_1_252_0
Eichelsbacher, Peter; Martschink, Bastian. On rates of convergence in the Curie–Weiss–Potts model with an external field. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 252-282. doi : 10.1214/14-AIHP599. http://www.numdam.org/articles/10.1214/14-AIHP599/
[1] Stein’s method for diffusion approximations. Probab. Theory Related Fields 84 (3) (1990) 297–322. | MR | Zbl
.[2] An exposition of Götze’s estimation of the rate of convergence in the multivariate central limit theorem, 2010. Available at arXiv:1003.4254.
and .[3] Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys. 122 (6) (2006) 1139–1193. | MR | Zbl
, and .[4] Thermodynamic vs topological phase transition: Cusp in the Kertéz line. Europhys. Lett. 82 (2008) 1–5. | DOI
, , and .[5] Exchangeable pairs and Poisson approximation. Probab. Surv. 2 (2005) 64–106 (electronic). | DOI | EuDML | MR | Zbl
, and .[6] Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 257–283. | MR | Zbl
and .[7] Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. Ann. Appl. Probab. 21 (2) (2011) 464–483. | MR | Zbl
and .[8] Multiple critical behavior of probabilistic limit theorems in the neighborhood of a tricritical point. J. Stat. Phys. 127 (3) (2007) 495–552. | MR | Zbl
, and .[9] Complete analysis of phase transitions and ensemble equivalence for the Curie–Weiss–Potts model. J. Math. Phys. 46 (6) (2005) 063301. | DOI | MR | Zbl
, and .[10] Large Deviations Techniques and Applications. Springer, New York, 1998. | DOI | MR | Zbl
and .[11] Stein’s method for dependent variables occurring in statistical mechanics. Electron. J. Probab. 15 (30) (2010) 962–988. | MR | Zbl
and .[12] Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101 (5–6) (2000) 999–1064. | MR | Zbl
, and .[13] Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 (2) (1978) 117–139. | MR | Zbl
and .[14] Limit theorems for the empirical vector of the Curie–Weiss–Potts model. Stochastic Process. Appl. 35 (1) (1990) 59–79. | MR | Zbl
and .[15] Limit theorems for maximum likelihood estimators in the Curie–Weiss–Potts model. Stochastic Process. Appl. 40 (2) (1992) 251–288. | MR | Zbl
and .[16] Limit theorems and coexistence probabilities for the Curie–Weiss Potts model with an external field. Stochastic Process. Appl. 120 (1) (2010) 84–104. | MR | Zbl
, and .[17] On the rate of convergence in the multivariate CLT. Ann. Probab. 19 (2) (1991) 724–739. | MR | Zbl
.[18] Potts model in the many–component limit. J. Phys. A 13 (1980) 2143–2148. | DOI
and .[19] Behavior in large dimensions of the Potts and Heisenberg models. Rev. Math. Phys. 1 (2–3) (1989) 147–182. | MR | Zbl
and .[20] Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37 (6) (2009) 2150–2173. | MR | Zbl
and .[21] A multivariate CLT for local dependence with rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56 (2) (1996) 333–350. | MR | Zbl
and .[22] On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted -statistics. Ann. Appl. Probab. 7 (4) (1997) 1080–1105. | MR | Zbl
and .[23] The field theory as a classical Ising model. Comm. Math. Phys. 33 (1973) 145–164. | DOI | MR
and .[24] A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory (Berkeley, Calif.) 583–602. Univ. California Press, Berkeley, 1972. | MR | Zbl
.[25] Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series 7. IMS, Hayward, CA, 1986. | MR | Zbl
.[26] Use of exchangeable pairs in the analysis of simulations. In Stein’s Method: Expository Lectures and Applications 1–26. IMS Lecture Notes Monogr. Ser. 46. IMS, Beachwood, OH, 2004. | MR | Zbl
, , and .[27] Solutions of the variational problem in the Curie–Weiss–Potts model. Stochastic Process. Appl. 50 (2) (1994) 245–252. | MR | Zbl
.[28] The Potts model. Rev. Modern Phys. 54 (1) (1982) 235–268. | MR
.Cité par Sources :