Cette article montre que dans la percolation de Bernoulli par arête en grande dimension, retirer d’une composante connexe infinie de faible densité une composante connexe de densité beaucoup plus faible laisse une composante connexe infinie. Cette observation a des implications pour le processus de feux de forêt de van den Berg–Brouwer, également connu sous le nom de percolation auto-destructive, en dimension suffisamment grande.
We show that in high dimensional Bernoulli bond percolation, removing from a thin infinite cluster a much thinner infinite cluster leaves an infinite component. This observation has implications for the van den Berg–Brouwer forest fire process, also known as self-destructive percolation, for dimension high enough.
@article{AIHPB_2015__51_3_862_0, author = {Ahlberg, Daniel and Duminil-Copin, Hugo and Kozma, Gady and Sidoravicius, Vladas}, title = {Seven-dimensional forest fires}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {862--866}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/13-AIHP587}, mrnumber = {3365964}, zbl = {1323.60123}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP587/} }
TY - JOUR AU - Ahlberg, Daniel AU - Duminil-Copin, Hugo AU - Kozma, Gady AU - Sidoravicius, Vladas TI - Seven-dimensional forest fires JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 862 EP - 866 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP587/ DO - 10.1214/13-AIHP587 LA - en ID - AIHPB_2015__51_3_862_0 ER -
%0 Journal Article %A Ahlberg, Daniel %A Duminil-Copin, Hugo %A Kozma, Gady %A Sidoravicius, Vladas %T Seven-dimensional forest fires %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 862-866 %V 51 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP587/ %R 10.1214/13-AIHP587 %G en %F AIHPB_2015__51_3_862_0
Ahlberg, Daniel; Duminil-Copin, Hugo; Kozma, Gady; Sidoravicius, Vladas. Seven-dimensional forest fires. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 862-866. doi : 10.1214/13-AIHP587. http://www.numdam.org/articles/10.1214/13-AIHP587/
[1] Introduction to Percolation Theory, 2nd edition. Taylor and Francis, London, 1994. | MR | Zbl
and .[2] Bernoulli and self-destructive percolation on non-amenable graphs. Electron. J. Probab. 19 (2014) 1–6. | MR | Zbl
, and .[3] Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2) (2008) 374–392. | Numdam | MR | Zbl
, , and .[4] Percolation of finite clusters and infinite surfaces. Math. Proc. Cambridge Phil. Soc. 156 (2014) 263–279. | DOI | MR | Zbl
, and .[5] The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 (1879) (1990) 439–457. | MR | Zbl
and .[6] Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36 (2) (2008) 530–593. | MR | Zbl
.[7] Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 (1) (2003) 349–408. | MR | Zbl
, and .[8] Percolation Theory for Mathematicians. Progress in Probability and Statistics 2. Birkhäuser, Boston, MA, 1982. | DOI | MR | Zbl
.[9] Arm exponents in high dimensional percolation. J. Amer. Math. Soc. 24 (2) (2011) 375–409. | MR | Zbl
and .[10] Domination by product measures. Ann. Probab. 25 (1) (1997) 71–95. | MR | Zbl
, and .[11] Self-destructive percolation. Random Structures Algorithms 24 (4) (2004) 480–501. | MR | Zbl
and .[12] Box-crossings and continuity results for self-destructive percolation in the plane. In In and Out of Equilibrium 2 117–135. Progr. Probab. 60. Birkhäuser, Basel, 2008. | MR | Zbl
, and .[13] Linear lower bounds for for a class of 2D self-destructive percolation models. Random Structures Algorithms 34 (4) (2009) 520–526. | MR | Zbl
and .[14] Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (3) (1985) 556–569. | MR | Zbl
and .Cité par Sources :