Le but de cet article est de développer une théorie autour des noyaux de la forme « intégrale de chemin » qui apparaissent dans l’étude des processus déterminantaux et des familles de chemins sans intersection. Notre premier résultat montre comment des déterminants avec de tels noyaux apparaissent naturellement dans l’étude du quotient de fonctions de partition et d’espérances de fonctionnelles pour des familles de chemins sans intersection sur des graphes avec des pondérations. Notre second résultat montre comment les déterminants de Fredholm avec des noyaux étendus (comme ceux que l’on trouve dans le cas du processus déterminantal ) sont égaux à des déterminants de Fredholm avec des noyaux de la forme « intégrale de chemin ». Nous montrons aussi comment ce second résultat s’applique à une grande variété d’exemples dont le mouvement Brownien stationnaire de Dyson, le processus , le processus de Pearcey, les processus et ainsi que les processus de Markov sur les partitions reliées aux -mesures.
The purpose of this article is to develop a theory behind the occurrence of “path-integral” kernels in the study of extended determinantal point processes and non-intersecting line ensembles. Our first result shows how determinants involving such kernels arise naturally in studying ratios of partition functions and expectations of multiplicative functionals for ensembles of non-intersecting paths on weighted graphs. Our second result shows how Fredholm determinants with extended kernels (as arise in the study of extended determinantal point processes such as the process) are equal to Fredholm determinants with path-integral kernels. We also show how the second result applies to a number of examples including the stationary (GUE) Dyson Brownian motion, the process, the Pearcey process, the and processes, and Markov processes on partitions related to the -measures.
Mots clés : non-intersecting paths, determinantal point process
@article{AIHPB_2015__51_1_28_0, author = {Borodin, Alexei and Corwin, Ivan and Remenik, Daniel}, title = {Multiplicative functionals on ensembles of non-intersecting paths}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {28--58}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/13-AIHP579}, mrnumber = {3300963}, zbl = {06412897}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP579/} }
TY - JOUR AU - Borodin, Alexei AU - Corwin, Ivan AU - Remenik, Daniel TI - Multiplicative functionals on ensembles of non-intersecting paths JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 28 EP - 58 VL - 51 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP579/ DO - 10.1214/13-AIHP579 LA - en ID - AIHPB_2015__51_1_28_0 ER -
%0 Journal Article %A Borodin, Alexei %A Corwin, Ivan %A Remenik, Daniel %T Multiplicative functionals on ensembles of non-intersecting paths %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 28-58 %V 51 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP579/ %R 10.1214/13-AIHP579 %G en %F AIHPB_2015__51_1_28_0
Borodin, Alexei; Corwin, Ivan; Remenik, Daniel. Multiplicative functionals on ensembles of non-intersecting paths. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 28-58. doi : 10.1214/13-AIHP579. http://www.numdam.org/articles/10.1214/13-AIHP579/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. U.S. Government Printing Office, Washington, DC, 1964. | MR | Zbl
and .[2] Dyson’s nonintersecting Brownian motions with a few outliers. Comm. Pure Appl. Math. 62 (2009) 334–395. | DOI | MR | Zbl
, and .[3] Airy processes with wanderers and new universality classes. Ann. Probab. 38 (2010) 714–769. | DOI | MR | Zbl
, and .[4] Non-intersecting random walks in the neighborhood of a symmetric tacnode. Ann. Probab. 41 (2013) 2599–2647. | DOI | MR | Zbl
, and .[5] Double Aztec diamonds and the tacnode process. Adv. Math. 252 (2014) 518–571. | DOI | MR | Zbl
, and .[6] An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
, and .[7] Large limit of Gaussian random matrices with external source, part II. Comm. Math. Phys. 259 (2005) 367–389. | DOI | MR | Zbl
, and .[8] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005) 1643–1697. | DOI | MR | Zbl
, and .[9] On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. J. Math. Phys. 53 (2012) 083303. | MR | Zbl
, and .[10] Determinantal point processes. In The Oxford Handbook of Random Matrix Theory. Oxford Univ. Press, London, 2011. | MR | Zbl
.[11] Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 243–258. | DOI | Numdam | MR | Zbl
and .[12] Fluctuations in the discrete TASEP with periodic initial configurations and the process. Int. Math. Res. Pap. 2007 (2007) rpm002. | MR | Zbl
, and .[13] Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (5–6) (2007) 1055–1080. | MR | Zbl
, , and .[14] Transition between and processes and TASEP fluctuations. Comm. Pure Appl. Math. 61 (2008) 1603–1629. | DOI | MR | Zbl
, and .[15] Point processes and the infinite symmetric group. Math. Res. Lett. 5 (1998) 799–816. | DOI | MR | Zbl
and .[16] Random partitions and the Gamma kernel. Adv. Math. 194 (1) (2005) 141–202. | MR | Zbl
and .[17] Stochastic dynamics related to Plancherel measures on partitions. In Representation Theory, Dynamical Systems, and Asymptotic Combinatorics. American Mathematical Society Translations—Series 2: Advances in the Mathematical Sciences 217 9–21. American Mathematical Society. Providence, 2006. | MR | Zbl
and .[18] Markov processes on partitions. Probab. Theory Related Fields 135 (2006) 84–152. | DOI | MR | Zbl
and .[19] Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132 (2008) 275–290. | DOI | MR | Zbl
and .[20] Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121 (2005) 291–317. | MR | Zbl
and .[21] Handbook of Brownian Motion: Facts and Formulae, 2nd edition. Birkhäuser, Basel, 2002. | DOI | MR | Zbl
and .[22] Tail decay for the distribution of the endpoint of a directed polymer. Nonlinearity 26 (2013) 1449–1472. | DOI | MR | Zbl
and .[23] Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E 57 (1998) 4140–4149. | DOI | MR
and .[24] Level spacing of random matrices in an external source. Phys. Rev. E 58 (1998) 7176–7185. | DOI | MR
and .[25] Brownian Gibbs property for Airy line ensembles. Invent. Math. 195 (2014) 441–508. | DOI | MR | Zbl
and .[26] Continuum statistics of the process. Comm. Math. Phys. 317 (2013) 347–362. | DOI | MR | Zbl
, and .[27] Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31 (1998) 4449–4456. | MR | Zbl
and .[28] The universal and processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices: In Honor of Percy Deift. Contemporary Mathematics 458 321–332. American Mathematical Society, Providence, 2008. | MR | Zbl
.[29] P. L. Ferrari and B. Vető. Non-colliding Brownian bridges and the asymmetric tacnode process. Electron. J. Probab. 44 (2012) 44. | MR | Zbl
[30] Binomial determinants, paths, and hook length formulae. Adv. Math. 58 (1985) 300–321. | DOI | MR | Zbl
and .[31] Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 (2002) 225–280. | DOI | MR | Zbl
.[32] Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003) 277–329. | DOI | MR | Zbl
.[33] Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier (Grenoble) 55 (2005) 2129–2145. | Numdam | MR | Zbl
.[34] Non-colliding Brownian motions and the extended tacnode process. Comm. Math. Phys. 319 (2013) 231–267. | DOI | MR | Zbl
.[35] Brownian Motion and Stochastic Calculus. Springer, Berlin, 1991. | MR | Zbl
and .[36] Coincidence probabilities. Pacific J. Math. 9 (1959) 1141–1164. | DOI | MR | Zbl
and .[37] Noncolliding squared Bessel processes. J. Stat. Phys. 142 (2011) 592–615. | DOI | MR | Zbl
and .[38] On the vector representation of induced matroids. Bull. London Math. Soc. 5 (1973) 85–90. | DOI | MR | Zbl
.[39] Endpoint distribution of directed polymers in 11 dimensions. Comm. Math. Phys. 317 (2013) 363–380. | DOI | MR | Zbl
, and .[40] Multilevel dynamical correlation function for Dyson’s Brownian motion model of random matrices. Phys. Lett. A 247 (1998) 42–46. | DOI
and .[41] Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Amer. Math. Soc. 16 (2003) 581–603. | DOI | MR | Zbl
and .[42] An introduction to harmonic analysis on the infinite symmetric group. In Asymptotic Combinatorics with Applications to Mathematical Physics. A. Vershik (Ed.). Lecture Notes in Math. 1815 127–160. Springer, Berlin, 2003. | MR | Zbl
.[43] Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108 (2002) 1071–1106. | DOI | MR | Zbl
and .[44] The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. Theory Exp. 3 (2011) P03020. | MR | Zbl
and .[45] Supremum of the process minus a parabola on a half line. J. Stat. Phys. 150 (2013) 442–456. | DOI | MR | Zbl
and .[46] Local behavior and hitting probabilities of the process. Probab. Theory Related Fields 157 (2013) 605–634. | DOI | MR | Zbl
and .[47] Tails of the endpoint distribution of directed polymers. Ann. Inst. Henri Poincaré Probab. Stat. To appear. | DOI | Numdam | MR | Zbl
and .[48] Airy processes and variational problems. In Topics in Percolative and Disordered Systems. To appear. Available at arXiv:1301.0750. | DOI | MR
and .[49] Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38 (2005) L549–L556. | MR
.[50] Extremes of vicious walkers for large : Application to the directed polymer and KPZ interfaces. J. Stat. Phys. 149 (2012) 385–410. | DOI | MR | Zbl
.[51] Exact distribution of the maximal height of vicious walkers. Phys. Rev. Lett. 101 (2008) 150601. | MR | Zbl
, , and .[52] Trace Ideals and Their Applications, 2nd edition. American Mathematical Society, Providence, 2000. | MR | Zbl
.[53] Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83 (1990) 96–131. | MR | Zbl
.[54] Differential equations for the Dyson process. Comm. Math. Phys. 252 (2004) 7–41. | DOI | MR | Zbl
and .[55] The Pearcey process. Comm. Math. Phys. 263 (2006) 381–400. | DOI | MR | Zbl
and .Cité par Sources :