Tunneling of the Kawasaki dynamics at low temperatures in two dimensions
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 59-88.

On considère un gaz sur réseau évoluant selon la dynamique de Kawasaki à température inverse β sur le tore bi-dimensionel 𝛬 L ={0,,L-1} 2 . Nous étudions l’évolution du processus parmi les états d’énergie minimale. Supposons la présence de n 2 particules, n<L/2 et qu’á l’état initial les sites du carré {0,,n-1} 2 soient tous occupés. Nous montrons qu’á l’échelle de temps e 2β le processus évolue comme une chaîne de Markov sur 𝛬 L qui saute d’un site 𝐱 vers un site 𝐲𝐱 à un taux strictement positif qui peut-être exprimé en terme de probabilités d’atteinte de dynamiques markoviennes élémentaires.

Consider a lattice gas evolving according to the conservative Kawasaki dynamics at inverse temperature β on a two dimensional torus 𝛬 L ={0,,L-1} 2 . We prove the tunneling behavior of the process among the states of minimal energy. More precisely, assume that there are n 2 particles, n<L/2, and that the initial state is the configuration in which all sites of the square {0,,n-1} 2 are occupied. We show that in the time scale e 2β the process evolves as a Markov process on 𝛬 L which jumps from any site 𝐱 to any other site 𝐲𝐱 at a strictly positive rate which can be expressed in terms of the hitting probabilities of simple Markovian dynamics.

DOI : 10.1214/13-AIHP568
Classification : 82C44, 82C22, 60K35
Mots clés : metastability, tunneling, lattice gases, kawasaki dynamics, capacities
@article{AIHPB_2015__51_1_59_0,
     author = {Beltr\'an, J. and Landim, C.},
     title = {Tunneling of the {Kawasaki} dynamics at low temperatures in two dimensions},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {59--88},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {1},
     year = {2015},
     doi = {10.1214/13-AIHP568},
     mrnumber = {3300964},
     zbl = {06412898},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/13-AIHP568/}
}
TY  - JOUR
AU  - Beltrán, J.
AU  - Landim, C.
TI  - Tunneling of the Kawasaki dynamics at low temperatures in two dimensions
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 59
EP  - 88
VL  - 51
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/13-AIHP568/
DO  - 10.1214/13-AIHP568
LA  - en
ID  - AIHPB_2015__51_1_59_0
ER  - 
%0 Journal Article
%A Beltrán, J.
%A Landim, C.
%T Tunneling of the Kawasaki dynamics at low temperatures in two dimensions
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 59-88
%V 51
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/13-AIHP568/
%R 10.1214/13-AIHP568
%G en
%F AIHPB_2015__51_1_59_0
Beltrán, J.; Landim, C. Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 59-88. doi : 10.1214/13-AIHP568. http://www.numdam.org/articles/10.1214/13-AIHP568/

[1] J. Beltrán and C. Landim. Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140 (2010) 1065–1114. | DOI | MR | Zbl

[2] J. Beltrán and C. Landim. Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Related Fields 152 (2012) 781–807. | DOI | MR | Zbl

[3] J. Beltrán and C. Landim. Metastability of reversible finite state Markov processes. Stochastic Process. Appl. 121 (2011) 1633–1677. | DOI | MR | Zbl

[4] J. Beltrán and C. Landim. Tunneling and metastability of continuous time Markov chains II. The nonreversible case. J. Stat. Phys. 149 (2012) 598–618. | MR | Zbl

[5] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein. Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Related Fields 119 (2001) 99–161. | DOI | MR | Zbl

[6] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein. Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228 (2002) 219–255. | DOI | MR | Zbl

[7] A. Bovier, F. Den Hollander and F. R. Nardi. Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Probab. Theory Related Fields 135 (2006) 265–310. | DOI | MR | Zbl

[8] A. Bovier, F. Den Hollander and C. Spitoni. Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Probab. 38 (2010) 661–713. | DOI | MR | Zbl

[9] A. Bovier and F. Manzo. Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. J. Stat. Phys. 107 (2002) 757–779. | DOI | MR | Zbl

[10] M. Cassandro, A. Galves, E. Olivieri and M. E. Vares. Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 (1984) 603–634. | DOI | MR | Zbl

[11] A. Gaudillière, E. Olivieri and E. Scoppola. Nucleation pattern at low temperature for local Kawasaki dynamics in two dimensions. Markov Process. Related Fields 11 (2005) 553–628. | MR | Zbl

[12] A. Gaudillière, F. Den Hollander, F. R. Nardi, E. Olivieri and E. Scoppola. Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Process. Appl. 119 (2009) 737–774. | DOI | MR | Zbl

[13] B. Gois and C. Landim. Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. Preprint, 2013. Available at arXiv:1305.4542. | MR | Zbl

[14] F. Den Hollander, F. R. Nardi, E. Olivieri and E. Scoppola. Droplet growth for three dimensional Kawasaki dynamics. Probab. Theory Related Fields 125 (2003) 153–194. | DOI | MR | Zbl

[15] F. Den Hollander, E. Olivieri and E. Scoppola. Metastability and nucleation for conservative dynamics. J. Math. Phys. 41 (2000) 1424–1498. | DOI | MR | Zbl

[16] M. Jara, C. Landim and A. Teixeira. Quenched scaling limits of trap models. Ann. Probab. 39 (2011) 176–223. | DOI | MR | Zbl

[17] M. Jara, C. Landim and A. Teixeira. Universality of trap models in the ergodic time scale. Ann. Probab. To appear. Available at http://arxiv.org/abs/1208.5675, 2012. | MR | Zbl

[18] C. Landim. Metastability for a non-reversible dynamics: The evolution of the condensate in totally asymmetric zero range processes. Available at arXiv:1204.5987, 2012. | MR | Zbl

[19] F. Manzo, F. R. Nardi, E. Olivieri and E. Scoppola. On the essential features of metastability: Tunnelling Time and critical configurations. J. Stat. Phys. 115 (2004) 591–642. | DOI | MR | Zbl

[20] F. R. Nardi, E. Olivieri and E. Scoppola. Anisotropy effects in nucleation for conservative dynamics. J. Stat. Phys. 119 (2005) 539–595. | DOI | MR | Zbl

[21] J. R. Norris. Markov Chains. Cambridge Univ. Press, Cambridge, 1997. | Zbl

[22] E. Olivieri and E. Scoppola. Markov Chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79 (1995) 613–647. | MR | Zbl

[23] E. Olivieri and E. Scoppola. Markov Chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case. J. Stat. Phys. 84 (1996) 987–1041. | MR | Zbl

[24] C. Peixoto. Metastable behavior of low-temperature Glauber dynamics with stirring. J. Stat. Phys. 80 (1995) 1165–1184. | DOI | MR | Zbl

[25] E. Scoppola. Renormalization group for Markov chains and application to metastability. J. Stat. Phys. 73 (1993) 83–121. | DOI | MR | Zbl

Cité par Sources :