Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 732-769.

Nous construisons la généalogie d’un processus de branchement à espace d’états et temps continus associé à un mécanisme de branchement 𝛹 - ou 𝛹-CSBP - à l’aide d’un flot stochastique de partitions. Cette construction est valable quel que soit le mécanisme de branchement et permet de définir un objet remarquablement efficace pour étudier les comportements asymptotiques et les convergences. En particulier, nous étudions la propriété d’Eve - l’existence d’un ancêtre dont descend asymptotiquement toute la population - et donnons une condition nécessaire et suffisante sur le 𝛹-CSBP pour que cette propriété soit vérifiée. Finalement, nous montrons que le flot de partitions unifie la représentation lookdown et le flot de subordinateurs lorsque la propriété d’Eve est vérifiée.

We encode the genealogy of a continuous-state branching process associated with a branching mechanism 𝛹 - or 𝛹-CSBP in short - using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property - the existence of an ancestor from which the entire population descends asymptotically - and give a necessary and sufficient condition on the 𝛹-CSBP for this property to hold. Finally, we show that the flow of partitions unifies the lookdown representation and the flow of subordinators when the Eve property holds.

DOI : 10.1214/13-AIHP542
Classification : 60J80, 60G09, 60J25
Mots clés : continuous-state branching process, measure-valued process, genealogy, partition, stochastic flow, lookdown process, subordinator, EVE
@article{AIHPB_2014__50_3_732_0,
     author = {Labb\'e, Cyril},
     title = {Genealogy of flows of continuous-state branching processes via flows of partitions and the {Eve} property},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {732--769},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {3},
     year = {2014},
     doi = {10.1214/13-AIHP542},
     mrnumber = {3224288},
     zbl = {06340407},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/13-AIHP542/}
}
TY  - JOUR
AU  - Labbé, Cyril
TI  - Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 732
EP  - 769
VL  - 50
IS  - 3
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/13-AIHP542/
DO  - 10.1214/13-AIHP542
LA  - en
ID  - AIHPB_2014__50_3_732_0
ER  - 
%0 Journal Article
%A Labbé, Cyril
%T Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 732-769
%V 50
%N 3
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/13-AIHP542/
%R 10.1214/13-AIHP542
%G en
%F AIHPB_2014__50_3_732_0
Labbé, Cyril. Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 732-769. doi : 10.1214/13-AIHP542. http://www.numdam.org/articles/10.1214/13-AIHP542/

[1] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1991) 1-28. | MR | Zbl

[2] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl

[3] J. Bertoin, J. Fontbona and S. Martínez. On prolific individuals in a supercritical continuous-state branching process. J. Appl. Probab. 45 (2008) 714-726. | MR | Zbl

[4] J. Bertoin and J.-F. Le Gall. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000) 249-266. | MR | Zbl

[5] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003) 261-288. | MR | Zbl

[6] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147-181. | MR | Zbl

[7] M. Birkner, J. Blath, M. Capaldo, A. M. Etheridge, M. Möhle, J. Schweinsberg and A. Wakolbinger. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005) 303-325. | MR | Zbl

[8] M.-E. Caballero, A. Lambert and G. Uribe Bravo. Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6 (2009) 62-89. | MR | Zbl

[9] D. A. Dawson. Measure-Valued Markov Processes. Lecture Notes in Math. 1541. Springer, Berlin, 1993. | MR | Zbl

[10] D. A. Dawson and E. A. Perkins. Historical processes. Mem. Amer. Math. Soc. 93 (1991) iv+179. | MR | Zbl

[11] P. Donnelly and T. G. Kurtz. Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166-205. | MR | Zbl

[12] T. Duquesne and C. Labbé. On the Eve property for CSBP. Preprint, 2013. Available at arXiv:1305.6502. | MR | Zbl

[13] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi+147. | Numdam | MR | Zbl

[14] T. Duquesne and M. Winkel. Growth of Lévy trees. Probab. Theory Related Fields 139 (2007) 313-371. | MR | Zbl

[15] N. El Karoui and S. Roelly. Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. Stochastic Process. Appl. 38 (1991) 239-266. | MR | Zbl

[16] A. Greven, P. Pfaffelhuber and A. Winter. Tree-valued resampling dynamics martingale problems and applications. Probab. Theory Related Fields 155 (2013) 789-838. | MR

[17] A. Greven, L. Popovic and A. Winter. Genealogy of catalytic branching models. Ann. Appl. Probab. 19 (2009) 1232-1272. | MR | Zbl

[18] D. R. Grey. Asymptotic behaviour of continuous time, continuous state-space branching processes. J. App. Probab. 11 (1974) 669-677. | MR | Zbl

[19] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 2003. | MR | Zbl

[20] M. Jiřina. Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (1958) 292-313. | MR | Zbl

[21] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer-Verlag, New York, 2002. | MR | Zbl

[22] C. Labbé. From flows of Lambda Fleming-Viot processes to lookdown processes via flows of partitions. Preprint, 2011. Available at arXiv:1107.3419.

[23] J.-F. Le Gall and Y. Le Jan. Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 (1998) 213-252. | MR | Zbl

[24] J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR | Zbl

[25] M. Silverstein. A new approach to local times. J. Math. Mech. 17 (1968) 1023-1054. | MR | Zbl

[26] R. Tribe. The behavior of superprocesses near extinction. Ann. Probab. 20 (1992) 286-311. | MR | Zbl

[27] S. Watanabe. A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 (1968) 141-167. | MR | Zbl

Cité par Sources :