Nous construisons la généalogie d’un processus de branchement à espace d’états et temps continus associé à un mécanisme de branchement
We encode the genealogy of a continuous-state branching process associated with a branching mechanism
Mots-clés : continuous-state branching process, measure-valued process, genealogy, partition, stochastic flow, lookdown process, subordinator, EVE
@article{AIHPB_2014__50_3_732_0, author = {Labb\'e, Cyril}, title = {Genealogy of flows of continuous-state branching processes via flows of partitions and the {Eve} property}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {732--769}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/13-AIHP542}, mrnumber = {3224288}, zbl = {06340407}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP542/} }
TY - JOUR AU - Labbé, Cyril TI - Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 732 EP - 769 VL - 50 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP542/ DO - 10.1214/13-AIHP542 LA - en ID - AIHPB_2014__50_3_732_0 ER -
%0 Journal Article %A Labbé, Cyril %T Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 732-769 %V 50 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP542/ %R 10.1214/13-AIHP542 %G en %F AIHPB_2014__50_3_732_0
Labbé, Cyril. Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 732-769. doi : 10.1214/13-AIHP542. https://www.numdam.org/articles/10.1214/13-AIHP542/
[1] The continuum random tree. I. Ann. Probab. 19 (1991) 1-28. | MR | Zbl
.[2] Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
.[3] On prolific individuals in a supercritical continuous-state branching process. J. Appl. Probab. 45 (2008) 714-726. | MR | Zbl
, and .[4] The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000) 249-266. | MR | Zbl
and .[5] Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003) 261-288. | MR | Zbl
and .[6] Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147-181. | MR | Zbl
and .[7] Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005) 303-325. | MR | Zbl
, , , , , and .[8] Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6 (2009) 62-89. | MR | Zbl
, and .[9] Measure-Valued Markov Processes. Lecture Notes in Math. 1541. Springer, Berlin, 1993. | MR | Zbl
.[10] Historical processes. Mem. Amer. Math. Soc. 93 (1991) iv+179. | MR | Zbl
and .[11] Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166-205. | MR | Zbl
and .[12] On the Eve property for CSBP. Preprint, 2013. Available at arXiv:1305.6502. | MR | Zbl
and .[13] Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi+147. | Numdam | MR | Zbl
and .[14] Growth of Lévy trees. Probab. Theory Related Fields 139 (2007) 313-371. | MR | Zbl
and .[15] Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. Stochastic Process. Appl. 38 (1991) 239-266. | MR | Zbl
and .[16] Tree-valued resampling dynamics martingale problems and applications. Probab. Theory Related Fields 155 (2013) 789-838. | MR
, and .[17] Genealogy of catalytic branching models. Ann. Appl. Probab. 19 (2009) 1232-1272. | MR | Zbl
, and .[18] Asymptotic behaviour of continuous time, continuous state-space branching processes. J. App. Probab. 11 (1974) 669-677. | MR | Zbl
.[19] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 2003. | MR | Zbl
and .[20] Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (1958) 292-313. | MR | Zbl
.[21] Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer-Verlag, New York, 2002. | MR | Zbl
.[22] From flows of Lambda Fleming-Viot processes to lookdown processes via flows of partitions. Preprint, 2011. Available at arXiv:1107.3419.
.[23] Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 (1998) 213-252. | MR | Zbl
and .[24] Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR | Zbl
.[25] A new approach to local times. J. Math. Mech. 17 (1968) 1023-1054. | MR | Zbl
.[26] The behavior of superprocesses near extinction. Ann. Probab. 20 (1992) 286-311. | MR | Zbl
.[27] A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 (1968) 141-167. | MR | Zbl
.- The coalescent structure of uniform and Poisson samples from multitype branching processes, The Annals of Applied Probability, Volume 33 (2023) no. 6A | DOI:10.1214/23-aap1934
- Asymptotic behaviour of ancestral lineages in subcritical continuous-state branching populations, Stochastic Processes and their Applications, Volume 150 (2022), p. 510 | DOI:10.1016/j.spa.2022.05.001
- Continuous-state branching processes, extremal processes and super-individuals, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 55 (2019) no. 2 | DOI:10.1214/18-aihp909
- Coalescences in continuous-state branching processes, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp358
- From flows of
-Fleming-Viot processes to lookdown processes via flows of partitions, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-3192 - On the Eve property for CSBP, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-2831
Cité par 6 documents. Sources : Crossref