On considère une nouvelle distance entre les mesures de probabilité sur . Elle est construite à partir d’un processus de saut par une variante non-locale de la formule de Benamou-Brenier. Pour les processus de Lévy on démontre que le semigroupe engendré par l’opérateur non-local associé est le flot de gradient de l’entropie par rapport à la nouvelle distance. On démontre aussi que l’entropie est convexe le long des géodésiques dans ce cas.
We introduce a new transport distance between probability measures on that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou-Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is convex along geodesics.
Mots-clés : jump process, Lévy process, gradient flow, entropy, optimal transport
@article{AIHPB_2014__50_3_920_0, author = {Erbar, Matthias}, title = {Gradient flows of the entropy for jump processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {920--945}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/12-AIHP537}, mrnumber = {3224294}, zbl = {1311.60091}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP537/} }
TY - JOUR AU - Erbar, Matthias TI - Gradient flows of the entropy for jump processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 920 EP - 945 VL - 50 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP537/ DO - 10.1214/12-AIHP537 LA - en ID - AIHPB_2014__50_3_920_0 ER -
Erbar, Matthias. Gradient flows of the entropy for jump processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 920-945. doi : 10.1214/12-AIHP537. http://www.numdam.org/articles/10.1214/12-AIHP537/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition. Lectures in Mathematics. Birkhäuser, Basel, 2008. | MR | Zbl
, and .[2] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Preprint, 2011. Available at arXiv:1106.2090. | MR
, and .[3] Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Related Fields 145 (2009) 517-564. | MR | Zbl
, and .[4] Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93. Cambridge Univ. Press, Cambridge, 2004. | MR | Zbl
.[5] Diffusions hypercontractives. In Séminaire de Probabilités XIX 177-206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR | Zbl
and .[6] Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963-1999. | MR | Zbl
, , and .[7] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. | MR | Zbl
and .[8] Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[9] Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1989. | MR | Zbl
.[10] The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. of Math. (2) 174 (2011) 1163-1187. | MR | Zbl
and .[11] Heat kernel estimates for stable-like processes on -sets. Stochastic Process. Appl. 108 (2003) 27-62. | MR | Zbl
and .[12] Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203 (2012) 969-1008. | MR | Zbl
, , and .[13] Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40 (2008) 1104-1122. | MR | Zbl
and .[14] A new class of transport distances between measures. Calc. Var. Partial Differential Equations 34 (2009) 193-231. | MR | Zbl
, and .[15] The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 1-23. | Numdam | MR | Zbl
.[16] Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206 (2012) 997-1038. | MR | Zbl
and .[17] Wasserstein space over the Wiener space. Probab. Theory Related Fields 146 (2010) 535-565. | MR | Zbl
, and .[18] On the heat flow on metric measure spaces: Existence, uniqueness and stability. Calc. Var. Partial Differential Equations 39 (2010) 101-120. | MR | Zbl
.[19] Heat flow on Alexandrov spaces. Comm. Pure Appl. Math. 66 (2013) 307-331. | MR | Zbl
, and .[20] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | MR | Zbl
, and .[21] Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009) 903-991. | MR | Zbl
and .[22] Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250-2292. | MR | Zbl
.[23] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179. | MR | Zbl
.[24] Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations 48 (2013) 1-31. | MR | Zbl
.[25] Heat flow on Finsler manifolds. Comm. Pure Appl. Math. 62 (2009) 1386-1433. | MR | Zbl
and .[26] The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | MR | Zbl
.[27] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400. | MR | Zbl
and .[28] On the geometry of metric measure spaces. I. Acta Math. 196 (2006) 65-131. | MR | Zbl
.[29] On the geometry of metric measure spaces. II. Acta Math. 196 (2006) 133-177. | MR | Zbl
.[30] Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. | MR | Zbl
.Cité par Sources :