Dans cet article nous prouvons un principe de grandes déviations de niveau trois pour une classe très générale de processus ponctuels, c'est à dire les processus de Hawkes non-linéaires ; nous obtenons une formule explicite pour la fonctionnelle de taux, donnée par l'entropie au niveau du processus.
In this paper, we prove a process-level, also known as level-3 large deviation principle for a very general class of simple point processes, i.e. nonlinear Hawkes process, with a rate function given by the process-level entropy, which has an explicit formula.
Mots clés : large deviations, rare events, point processes, Hawkes processes, self-exciting processes
@article{AIHPB_2014__50_3_845_0, author = {Zhu, Lingjiong}, title = {Process-level large deviations for nonlinear {Hawkes} point processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {845--871}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/12-AIHP532}, mrnumber = {3224291}, zbl = {1296.60129}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP532/} }
TY - JOUR AU - Zhu, Lingjiong TI - Process-level large deviations for nonlinear Hawkes point processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 845 EP - 871 VL - 50 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP532/ DO - 10.1214/12-AIHP532 LA - en ID - AIHPB_2014__50_3_845_0 ER -
%0 Journal Article %A Zhu, Lingjiong %T Process-level large deviations for nonlinear Hawkes point processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 845-871 %V 50 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP532/ %R 10.1214/12-AIHP532 %G en %F AIHPB_2014__50_3_845_0
Zhu, Lingjiong. Process-level large deviations for nonlinear Hawkes point processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 845-871. doi : 10.1214/12-AIHP532. http://www.numdam.org/articles/10.1214/12-AIHP532/
[1] Scaling limits for Hawkes processes and application to financial statistics. Preprint, 2012. Available at arXiv:1202.0842. | Zbl
, , and .[2] Large deviations of Poisson cluster processes. Stoch. Models 23 (2007) 593-625. | MR | Zbl
and .[3] Stability of nonlinear Hawkes processes. Ann. Probab. 24 (1996) 1563-1588. | MR | Zbl
and .[4] An Introduction to the Theory of Point Processes, 1st edition. Springer, New York, 1988. | MR | Zbl
and .[5] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR | Zbl
and .[6] Asymptotic evaluation of certain Markov process expectations for large time. IV. Comm. Pure Appl. Math. 36 (1983) 183-212. | MR | Zbl
and .[7] Point processes and random measures. Adv. in Appl. Probab. 9 (1977) 502-526. | MR | Zbl
.[8] Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1971) 83-90. | MR | Zbl
.[9] Multivariate Hawkes processes. Ph.D. thesis, ETH, 2009. | Zbl
.[10] Statistics of Random Processes II: Applications, 2nd edition. Springer, Berlin, 2001. | MR | Zbl
and .[11] Risk processes with non-stationary Hawkes arrivals. Methodol. Comput. Appl. Probab. 12 (2010) 415-429. | MR | Zbl
and .[12] Special invited paper: Large deviations. Ann. Probab. 36 (2008) 397-419. | Zbl
.[13] Large Deviations and Applications. SIAM, Philadelphia, 1984. | MR | Zbl
.[14] Large deviations for Markovian nonlinear Hawkes processes. Preprint, 2011. Available at arXiv:1108.2432. | MR
.[15] Central limit theorem for nonlinear Hawkes processes. J. Appl. Probab. 50 (2013) 760-771. | MR
.Cité par Sources :