Invariance principle for the random conductance model with dynamic bounded conductances
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 352-374.

Nous étudions une chaîne de Markov en temps continu X dans un environnement dynamique de conductances aléatoires dans d. Nous supposons que les conductances sont stationnaires ergodiques, uniformément positives et polynomialement mélangeantes en espace et en temps. Nous montrons un principe d’invariance << quenched >> pour X, et nous obtenons des bornes sur les fonctions de Green et un théorème limite local. Nous discutons aussi les liens avec les modèles d’interfaces aléatoires.

We study a continuous time random walk X in an environment of dynamic random conductances in d. We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for X, and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.

DOI : 10.1214/12-AIHP527
Classification : 60K37, 60F17, 82C41
Mots-clés : random conductance model, dynamic environment, invariance principle, ergodic, corrector, point of view of the particle, stochastic interface model
@article{AIHPB_2014__50_2_352_0,
     author = {Andres, Sebastian},
     title = {Invariance principle for the random conductance model with dynamic bounded conductances},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {352--374},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {2},
     year = {2014},
     doi = {10.1214/12-AIHP527},
     mrnumber = {3189075},
     zbl = {1290.60109},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/12-AIHP527/}
}
TY  - JOUR
AU  - Andres, Sebastian
TI  - Invariance principle for the random conductance model with dynamic bounded conductances
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 352
EP  - 374
VL  - 50
IS  - 2
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/12-AIHP527/
DO  - 10.1214/12-AIHP527
LA  - en
ID  - AIHPB_2014__50_2_352_0
ER  - 
%0 Journal Article
%A Andres, Sebastian
%T Invariance principle for the random conductance model with dynamic bounded conductances
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 352-374
%V 50
%N 2
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/12-AIHP527/
%R 10.1214/12-AIHP527
%G en
%F AIHPB_2014__50_2_352_0
Andres, Sebastian. Invariance principle for the random conductance model with dynamic bounded conductances. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 352-374. doi : 10.1214/12-AIHP527. https://www.numdam.org/articles/10.1214/12-AIHP527/

[1] S. Andres, M. T. Barlow, J.-D. Deuschel and B. Hambly. Invariance principle for the random conductance model. Preprint. Probab. Theory Related Fields. To appear. Available at DOI:10.1007/s00440-012-0435-2. | MR

[2] A. Bandyopadhyay and O. Zeitouni. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 205-224. | MR | Zbl

[3] M. T. Barlow and J.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | MR | Zbl

[4] M. T. Barlow and B. M. Hambly. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 (2009) 1-16. | MR | Zbl

[5] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83-120. | MR | Zbl

[6] M. Biskup. Recent progress on the random concuctance model. Probab. Surv. 8 (2011) 294-373. | MR | Zbl

[7] M. Biskup and T. M. Prescott. Functional CLT for random walk among bounded random conductances. Electron J. Probab. 12 (2007) 1323-1348. | MR | Zbl

[8] T. Bodineau and B. Graham. Helffer-Sjöstrand representation for conservative dynamics. Markov Process. Related Fields 18 (2012) 71-88. | MR | Zbl

[9] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133-156. | MR | Zbl

[10] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009) 3285-3299. | MR | Zbl

[11] T. Delmotte and J.-D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to ϕ interface model. Probab. Theory Related Fields 133 (2005) 358-390. | MR | Zbl

[12] Y. Derriennic and M. Lin. Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001) 93-130. | MR | Zbl

[13] D. Dolgopyat and C. Liverani. Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab. 14 (2009) 245-251. | MR | Zbl

[14] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl

[15] S. Ethier and T. Kurtz. Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1986. | MR | Zbl

[16] T. Funaki. Stochastic Interface Models. In Ecole d'été de probabilités de Saint Flour 2003 103-274. Lecture Notes in Mathematics 1869. Springer, Berlin, 2005. | MR | Zbl

[17] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg-Landau ϕ interface models. Commun. Math. Phys. 185 (1997) 1-36. | MR | Zbl

[18] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for ϕ interface model. Ann. Probab. 29 (2001) 1138-1172. | MR | Zbl

[19] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | MR | Zbl

[20] M. Joseph and F. Rassoul-Agha. Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011) 43-57. | MR | Zbl

[21] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Heidelberg, 2012. | MR

[22] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | MR | Zbl

[23] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR | Zbl

[24] J.-C. Mourrat. Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 294-327. | Numdam | MR | Zbl

[25] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299-314. | MR | Zbl

[26] F. Rassoul-Agha and T. Seppäläinen. Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 373-420. | Numdam | MR | Zbl

[27] F. Redig and F. Völlering, Limit theorems for random walks in dynamic random environment. Preprint. Available at arXiv:1106.4181v2. | Zbl

[28] W. Rudin. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973. | MR | Zbl

[29] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR | Zbl

  • TAKEUCHI, Yutaka Quenched invariance principle for a reflecting diffusion in a continuum percolation cluster, Journal of the Mathematical Society of Japan, Volume 76 (2024) no. 3 | DOI:10.2969/jmsj/89198919
  • Bauerschmidt, Roland; Park, Jiwoon; Rodriguez, Pierre-François The discrete Gaussian model, II. Infinite-volume scaling limit at high temperature, The Annals of Probability, Volume 52 (2024) no. 4 | DOI:10.1214/23-aop1659
  • Bauerschmidt, Roland; Park, Jiwoon; Rodriguez, Pierre-François The Discrete Gaussian model, I. Renormalisation group flow at high temperature, The Annals of Probability, Volume 52 (2024) no. 4 | DOI:10.1214/23-aop1658
  • TAKEUCHI, Yutaka Local Central Limit Theorem for Reflecting Diffusions in a Continuum Percolation Cluster, Tokyo Journal of Mathematics, Volume 47 (2024) no. 2 | DOI:10.3836/tjm/1502179412
  • Halberstam, Noah; Hutchcroft, Tom Collisions of random walks in dynamic random environments, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/21-ejp738
  • Dunlap, Alexander; Gu, Yu A quenched local limit theorem for stochastic flows, Journal of Functional Analysis, Volume 282 (2022) no. 6, p. 109372 | DOI:10.1016/j.jfa.2021.109372
  • Deuschel, Jean-Dominique; Guo, Xiaoqin Quenched local central limit theorem for random walks in a time-dependent balanced random environment, Probability Theory and Related Fields, Volume 182 (2022) no. 1-2, p. 111 | DOI:10.1007/s00440-021-01097-7
  • Hughes, Barry D. Conduction and Diffusion in Percolating Systems, Complex Media and Percolation Theory (2021), p. 191 | DOI:10.1007/978-1-0716-1457-0_93
  • Andres, Sebastian; Taylor, Peter A. Local Limit Theorems for the Random Conductance Model and Applications to the Ginzburg–Landau ϕ Interface Model, Journal of Statistical Physics, Volume 182 (2021) no. 2 | DOI:10.1007/s10955-021-02705-5
  • Andres, Sebastian; Chiarini, Alberto; Slowik, Martin Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights, Probability Theory and Related Fields, Volume 179 (2021) no. 3-4, p. 1145 | DOI:10.1007/s00440-021-01028-6
  • Chen, Xin; Chen, Zhen-Qing; Kumagai, Takashi; Wang, Jian Homogenization of Symmetric Stable-like Processes in Stationary Ergodic Media, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 3, p. 2957 | DOI:10.1137/20m1326726
  • Andres, Sebastian; Deuschel, Jean-Dominique; Slowik, Martin Green kernel asymptotics for two-dimensional random walks under random conductances, Electronic Communications in Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ecp337
  • Redig, Frank; Saada, Ellen; Sau, Federico Symmetric simple exclusion process in dynamic environment: hydrodynamics, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp536
  • Hughes, Barry D. Conduction and Diffusion in Percolating Systems, Encyclopedia of Complexity and Systems Science (2020), p. 1 | DOI:10.1007/978-3-642-27737-5_93-3
  • Biskup, Marek An invariance principle for one-dimensional random walks among dynamical random conductances, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp348
  • Bella, Peter; Chiarini, Alberto; Fehrman, Benjamin A Liouville theorem for stationary and ergodic ensembles of parabolic systems, Probability Theory and Related Fields, Volume 173 (2019) no. 3-4, p. 759 | DOI:10.1007/s00440-018-0843-z
  • Deuschel, Jean-Dominique; Guo, Xiaoqin; Ramírez, Alejandro F. Quenched invariance principle for random walk in time-dependent balanced random environment, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 1 | DOI:10.1214/16-aihp807
  • Biskup, Marek; Rodriguez, Pierre-François Limit theory for random walks in degenerate time-dependent random environments, Journal of Functional Analysis, Volume 274 (2018) no. 4, p. 985 | DOI:10.1016/j.jfa.2017.12.002
  • Andres, Sebastian; Chiarini, Alberto; Deuschel, Jean-Dominique; Slowik, Martin Quenched invariance principle for random walks with time-dependent ergodic degenerate weights, The Annals of Probability, Volume 46 (2018) no. 1 | DOI:10.1214/17-aop1186
  • Andres, Sebastian; Deuschel, Jean-Dominique; Slowik, Martin Invariance principle for the random conductance model in a degenerate ergodic environment, The Annals of Probability, Volume 43 (2015) no. 4 | DOI:10.1214/14-aop921
  • Avena, Luca Symmetric exclusion as a model of non-elliptic dynamical random conductances, Electronic Communications in Probability, Volume 17 (2012) no. none | DOI:10.1214/ecp.v17-2081
  • Avena, L. Symmetric exclusion as a model of non-elliptic dynamical random conductances, arXiv (2012) | DOI:10.48550/arxiv.1206.1817 | arXiv:1206.1817

Cité par 22 documents. Sources : Crossref, NASA ADS