Nous étudions une chaîne de Markov en temps continu
We study a continuous time random walk
Mots-clés : random conductance model, dynamic environment, invariance principle, ergodic, corrector, point of view of the particle, stochastic interface model
@article{AIHPB_2014__50_2_352_0, author = {Andres, Sebastian}, title = {Invariance principle for the random conductance model with dynamic bounded conductances}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {352--374}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP527}, mrnumber = {3189075}, zbl = {1290.60109}, language = {en}, url = {https://www.numdam.org/articles/10.1214/12-AIHP527/} }
TY - JOUR AU - Andres, Sebastian TI - Invariance principle for the random conductance model with dynamic bounded conductances JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 352 EP - 374 VL - 50 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP527/ DO - 10.1214/12-AIHP527 LA - en ID - AIHPB_2014__50_2_352_0 ER -
%0 Journal Article %A Andres, Sebastian %T Invariance principle for the random conductance model with dynamic bounded conductances %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 352-374 %V 50 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP527/ %R 10.1214/12-AIHP527 %G en %F AIHPB_2014__50_2_352_0
Andres, Sebastian. Invariance principle for the random conductance model with dynamic bounded conductances. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 352-374. doi : 10.1214/12-AIHP527. https://www.numdam.org/articles/10.1214/12-AIHP527/
[1] Invariance principle for the random conductance model. Preprint. Probab. Theory Related Fields. To appear. Available at DOI:10.1007/s00440-012-0435-2. | MR
, , and .[2] Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 205-224. | MR | Zbl
and .[3] Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | MR | Zbl
and .[4] Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 (2009) 1-16. | MR | Zbl
and .[5] Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83-120. | MR | Zbl
and .[6] Recent progress on the random concuctance model. Probab. Surv. 8 (2011) 294-373. | MR | Zbl
.[7] Functional CLT for random walk among bounded random conductances. Electron J. Probab. 12 (2007) 1323-1348. | MR | Zbl
and .[8] Helffer-Sjöstrand representation for conservative dynamics. Markov Process. Related Fields 18 (2012) 71-88. | MR | Zbl
and .[9] Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133-156. | MR | Zbl
, and .[10] Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009) 3285-3299. | MR | Zbl
, and .
[11] On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to
[12] Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001) 93-130. | MR | Zbl
and .[13] Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab. 14 (2009) 245-251. | MR | Zbl
and .[14] Probability: Theory and Examples, 4th edition. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
.[15] Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1986. | MR | Zbl
and .[16] Stochastic Interface Models. In Ecole d'été de probabilités de Saint Flour 2003 103-274. Lecture Notes in Mathematics 1869. Springer, Berlin, 2005. | MR | Zbl
.
[17] Motion by mean curvature from the Ginzburg-Landau
[18] Equilibrium fluctuations for
[19] On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | MR | Zbl
and .[20] Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011) 43-57. | MR | Zbl
and .[21] Fluctuations in Markov processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Heidelberg, 2012. | MR
, and .[22] Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | MR | Zbl
.[23] Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR | Zbl
and .[24] Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 294-327. | Numdam | MR | Zbl
.[25] An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299-314. | MR | Zbl
and .[26] Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 373-420. | Numdam | MR | Zbl
and .[27] Limit theorems for random walks in dynamic random environment. Preprint. Available at arXiv:1106.4181v2. | Zbl
and ,[28] Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973. | MR | Zbl
.[29] Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR | Zbl
and .- Quenched invariance principle for a reflecting diffusion in a continuum percolation cluster, Journal of the Mathematical Society of Japan, Volume 76 (2024) no. 3 | DOI:10.2969/jmsj/89198919
- The discrete Gaussian model, II. Infinite-volume scaling limit at high temperature, The Annals of Probability, Volume 52 (2024) no. 4 | DOI:10.1214/23-aop1659
- The Discrete Gaussian model, I. Renormalisation group flow at high temperature, The Annals of Probability, Volume 52 (2024) no. 4 | DOI:10.1214/23-aop1658
- Local Central Limit Theorem for Reflecting Diffusions in a Continuum Percolation Cluster, Tokyo Journal of Mathematics, Volume 47 (2024) no. 2 | DOI:10.3836/tjm/1502179412
- Collisions of random walks in dynamic random environments, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/21-ejp738
- A quenched local limit theorem for stochastic flows, Journal of Functional Analysis, Volume 282 (2022) no. 6, p. 109372 | DOI:10.1016/j.jfa.2021.109372
- Quenched local central limit theorem for random walks in a time-dependent balanced random environment, Probability Theory and Related Fields, Volume 182 (2022) no. 1-2, p. 111 | DOI:10.1007/s00440-021-01097-7
- Conduction and Diffusion in Percolating Systems, Complex Media and Percolation Theory (2021), p. 191 | DOI:10.1007/978-1-0716-1457-0_93
- Local Limit Theorems for the Random Conductance Model and Applications to the Ginzburg–Landau
Interface Model, Journal of Statistical Physics, Volume 182 (2021) no. 2 | DOI:10.1007/s10955-021-02705-5 - Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights, Probability Theory and Related Fields, Volume 179 (2021) no. 3-4, p. 1145 | DOI:10.1007/s00440-021-01028-6
- Homogenization of Symmetric Stable-like Processes in Stationary Ergodic Media, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 3, p. 2957 | DOI:10.1137/20m1326726
- Green kernel asymptotics for two-dimensional random walks under random conductances, Electronic Communications in Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ecp337
- Symmetric simple exclusion process in dynamic environment: hydrodynamics, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp536
- Conduction and Diffusion in Percolating Systems, Encyclopedia of Complexity and Systems Science (2020), p. 1 | DOI:10.1007/978-3-642-27737-5_93-3
- An invariance principle for one-dimensional random walks among dynamical random conductances, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp348
- A Liouville theorem for stationary and ergodic ensembles of parabolic systems, Probability Theory and Related Fields, Volume 173 (2019) no. 3-4, p. 759 | DOI:10.1007/s00440-018-0843-z
- Quenched invariance principle for random walk in time-dependent balanced random environment, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 1 | DOI:10.1214/16-aihp807
- Limit theory for random walks in degenerate time-dependent random environments, Journal of Functional Analysis, Volume 274 (2018) no. 4, p. 985 | DOI:10.1016/j.jfa.2017.12.002
- Quenched invariance principle for random walks with time-dependent ergodic degenerate weights, The Annals of Probability, Volume 46 (2018) no. 1 | DOI:10.1214/17-aop1186
- Invariance principle for the random conductance model in a degenerate ergodic environment, The Annals of Probability, Volume 43 (2015) no. 4 | DOI:10.1214/14-aop921
- Symmetric exclusion as a model of non-elliptic dynamical random conductances, Electronic Communications in Probability, Volume 17 (2012) no. none | DOI:10.1214/ecp.v17-2081
- Symmetric exclusion as a model of non-elliptic dynamical random conductances, arXiv (2012) | DOI:10.48550/arxiv.1206.1817 | arXiv:1206.1817
Cité par 22 documents. Sources : Crossref, NASA ADS