Soit un entier. Très populaire en informatique fondamentale, l’arbre -aire de recherche est une chaîne de Markov à temps discret qui modélise de célèbres algorithmes de tri et de recherche de données. Ce processus aléatoire vérifie une transition de phase bien connue : lorsque , le comportement asymptotique du processus est gaussien. En revanche, lorsque , il n’est plus gaussien et fait apparaître la limite d’une martingale à valeurs complexes. Dans cet article, on considère le processus de branchement multitype qui est le plongement en temps continu de l’arbre -aire de recherche. Ce processus fait l’objet d’une transition de phase du même type. En particulier, lorsque , son asymptotique s’exprime à l’aide de la limite d’une martingale complexe. Grâce à la propriété de branchement, la loi de est solution d’une équation en distribution du type où est un nombre complexe particulier, les sont des variables aléatoires complexes indépendantes dont la loi est celle de , est une variable aléatoire réelle positive indépendante des , et désigne l’égalité en distribution. On étudie cette équation en loi par des approches variées. L’existence et l’unicité de solutions sont prouvées par des méthodes de contraction. L’absolue continuité de et le fait que son support soit le plan complexe tout entier sont démontrés par analyse de Fourier. Enfin, on obtient l’existence de moments exponentiels en considérant comme la limite d’une cascade de Mandelbrot à valeurs complexes.
Let be an integer. The so-called -ary search tree is a discrete time Markov chain which is very popular in theoretical computer science, modelling famous algorithms used in searching and sorting. This random process satisfies a well-known phase transition: when , the asymptotic behavior of the process is Gaussian, but for it is no longer Gaussian and a limit of a complex-valued martingale arises. In this paper, we consider the multitype branching process which is the continuous time version of the -ary search tree. This process satisfies a phase transition of the same kind. In particular, when , a limit of a complex-valued martingale intervenes in its asymptotics. Thanks to the branching property, the law of satisfies a smoothing equation of the type , where is a particular complex number, are independent complex-valued random variables having the same law as , is a -valued random variable independent of the , and denotes equality in law. This distributional equation is extensively studied by various approaches. The existence and uniqueness of solution of the equation are proved by contraction methods. The fact that the distribution of is absolutely continuous and that its support is the whole complex plane is shown via Fourier analysis. Finally, the existence of exponential moments of is obtained by considering as the limit of a complex Mandelbrot cascade.
Mots clés : martingale, characteristic function, embedding in continuous time, multitype branching process, smoothing transformation, absolute continuity, support, exponential moments
@article{AIHPB_2014__50_2_628_0, author = {Chauvin, Brigitte and Liu, Quansheng and Pouyanne, Nicolas}, title = {Limit distributions for multitype branching processes of $m$-ary search trees}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {628--654}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP518}, mrnumber = {3189087}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP518/} }
TY - JOUR AU - Chauvin, Brigitte AU - Liu, Quansheng AU - Pouyanne, Nicolas TI - Limit distributions for multitype branching processes of $m$-ary search trees JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 628 EP - 654 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP518/ DO - 10.1214/12-AIHP518 LA - en ID - AIHPB_2014__50_2_628_0 ER -
%0 Journal Article %A Chauvin, Brigitte %A Liu, Quansheng %A Pouyanne, Nicolas %T Limit distributions for multitype branching processes of $m$-ary search trees %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 628-654 %V 50 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP518/ %R 10.1214/12-AIHP518 %G en %F AIHPB_2014__50_2_628_0
Chauvin, Brigitte; Liu, Quansheng; Pouyanne, Nicolas. Limit distributions for multitype branching processes of $m$-ary search trees. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 628-654. doi : 10.1214/12-AIHP518. http://www.numdam.org/articles/10.1214/12-AIHP518/
[1] Branching Processes. Springer, New York, 1972. | MR | Zbl
and .[2] Convergence of complex multiplicative cascades. Ann. Appl. Probab. 20 (2010) 1219-1252. | MR | Zbl
, and .[3] Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
.[4] -ary search trees when : A strong asymptotics for the space requirements. Random Structures Algorithms 24 (2004) 133-154. | MR | Zbl
and .[5] Limit distributions for large Pólya urns. Ann. Appl. Probab. 21 (2011) 1-32. | MR | Zbl
, and .[6] Phase changes in random -ary search trees and generalized quicksort. Random Structures Algorithms 19 (2001) 316-358. | MR | Zbl
and .[7] Real Analysis and Probability. Cambridge Univ. Press, Cambridge, 2002. | MR | Zbl
.[8] Fixed points of the smoothing transformation. Z. Wahrsch. verw. Gebiete 64 (1983) 275-301. | MR | Zbl
and .[9] The space requirement of -ary search trees: Distributional asymptotics for . In Proceedings of the 7th Iranian Conference, Tehran, 2004. Available at ArXiv:math.PR/0405144. | MR
and .[10] Sur une extension de la notion de loi semi-stable. Ann. Inst. Henri Poincaré Probab. Stat. 26 (1990) 261-285. | Numdam | MR | Zbl
.[11] Moments of distributions attracted to operator-stable laws. J. Multivariate Anal. 24 (1988) 1-10. | MR | Zbl
, and .[12] Functional limit theorem for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 (2004) 177-245. | MR | Zbl
.[13] Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks. Stochastic Process. Appl. 82 (1999) 61-87. | MR | Zbl
.[14] Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stochastic Process. Appl. 95 (2001) 83-107. | MR | Zbl
.[15] Limit theorems for Mandelbrot's multiplicative cascades. Ann. Appl. Probab. 10 (2000) 218-239. | MR | Zbl
and .[16] Evolution of Random Search Trees. Wiley, New York, 1992. | MR | Zbl
.[17] Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl
.[18] Classification of large Pólya-Eggenberger urns with regard to their asymptotics. In 2005 International Conference on Analysis of Algorithms. Discrete Math. Theor. Comput. Sci. Proc., AD. Assoc. Discrete Math. Theor. Comput. Sci., Nancy 275-285, 2005 (electronic). | MR | Zbl
.[19] An algebraic approach to Pólya processes. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 293-323. | Numdam | MR | Zbl
.[20] A fixed point theorem for distributions. Stochastic Process. Appl. 42 (1992) 195-214. | Zbl
.[21] The contraction method for recursive algorithms. Algorithmica 29 (2001) 3-33. | MR | Zbl
and .[22] Operator-stable probability distribution on vector groups. Trans. Amer. Math. Soc. 136 (1969) 51-65. | MR | Zbl
.Cité par Sources :