Dans cet article nous étudions la composante principale
In this paper, we study the size of the giant component
Mots-clés : random geometric graphs, Size of giant component, number of components
@article{AIHPB_2013__49_4_1130_0, author = {Ganesan, Ghurumuruhan}, title = {Size of the giant component in a random geometric graph}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1130--1140}, publisher = {Gauthier-Villars}, volume = {49}, number = {4}, year = {2013}, doi = {10.1214/12-AIHP498}, mrnumber = {3127916}, zbl = {1283.60017}, language = {en}, url = {https://www.numdam.org/articles/10.1214/12-AIHP498/} }
TY - JOUR AU - Ganesan, Ghurumuruhan TI - Size of the giant component in a random geometric graph JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 1130 EP - 1140 VL - 49 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP498/ DO - 10.1214/12-AIHP498 LA - en ID - AIHPB_2013__49_4_1130_0 ER -
%0 Journal Article %A Ganesan, Ghurumuruhan %T Size of the giant component in a random geometric graph %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 1130-1140 %V 49 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP498/ %R 10.1214/12-AIHP498 %G en %F AIHPB_2013__49_4_1130_0
Ganesan, Ghurumuruhan. Size of the giant component in a random geometric graph. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 4, pp. 1130-1140. doi : 10.1214/12-AIHP498. https://www.numdam.org/articles/10.1214/12-AIHP498/
[1] Percolation. Cambridge Univ. Press, New York, 2006. | MR
and .[2] Closing gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inform. Theory 53 (2007) 1009-1018. | MR
, , and .[3] Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin, 1999. | MR
.[4] Critical power for asymptotic connectivity in wireless networks. In Stochastic Analysis, Control, Optimization and Applications 547-566. Systems Control Found. Appl. Birkhäuser, Boston, MA, 1999. | MR
and .[5] The bin-covering technique for thresholding random geometric graph properties. In Proc. SODA 989-998. ACM, New York, 2005. | MR
and .[6] Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford, 2003. | MR
.- Proximity Graphs, Spatial Networks (2022), p. 295 | DOI:10.1007/978-3-030-94106-2_15
- Stretch and Diameter in Random Geometric Graphs, Algorithmica, Volume 80 (2018) no. 1, p. 300 | DOI:10.1007/s00453-016-0253-5
- Rumors Spread Slowly in a Small-World Spatial Network, SIAM Journal on Discrete Mathematics, Volume 31 (2017) no. 4, p. 2414 | DOI:10.1137/16m1083256
- Infection Spread in Random Geometric Graphs, Advances in Applied Probability, Volume 47 (2015) no. 1, p. 164 | DOI:10.1239/aap/1427814586
- Rumours Spread Slowly in a Small World Spatial Network, Algorithms and Models for the Web Graph, Volume 9479 (2015), p. 107 | DOI:10.1007/978-3-319-26784-5_9
- Some Introductory Notes on Random Graphs, Mathematical Foundations of Complex Networked Information Systems, Volume 2141 (2015), p. 1 | DOI:10.1007/978-3-319-16967-5_1
- Threshold for the Outbreak of Cascading Failures in Degree-Degree Uncorrelated Networks, Mathematical Problems in Engineering, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/752893
- A Scale-Free Topology Construction Model for Wireless Sensor Networks, International Journal of Distributed Sensor Networks, Volume 10 (2014) no. 8, p. 764698 | DOI:10.1155/2014/764698
Cité par 8 documents. Sources : Crossref