Size of the giant component in a random geometric graph
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 4, pp. 1130-1140.

Dans cet article nous étudions la composante principale CG dans le graphe géométrique aléatoire G=G(n,rn,f) avec n nœuds indépendants, chacun étant distribué selon une densité f(·) dans [0,1]2 telle que infx[0,1]2f(x)> 0. Si c1nrn2c2lognn pour des constantes positives c1, c2 et nrn2 quand n, nous montrons que la composante principale de G contient au moins n-o(n) nœuds avec probabilité minorée par 1-e-βnrn2 pour tout n et pour une constante positive β. Nous obtenons aussi des estimations sur les diamètres et sur le nombre des plus petites composantes de G.

In this paper, we study the size of the giant component CG in the random geometric graph G=G(n,rn,f) of n nodes independently distributed each according to a certain density f(·) in [0,1]2 satisfying infx[0,1]2f(x)> 0. If c1nrn2c2lognn for some positive constants c1, c2 and nrn2 as n, we show that the giant component of G contains at least n-o(n) nodes with probability at least 1-e-βnrn2 for all n and for some positive constant β. We also obtain estimates on the diameter and number of the non-giant components of G.

DOI : 10.1214/12-AIHP498
Classification : 60D05, 60C05
Mots-clés : random geometric graphs, Size of giant component, number of components
@article{AIHPB_2013__49_4_1130_0,
     author = {Ganesan, Ghurumuruhan},
     title = {Size of the giant component in a random geometric graph},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1130--1140},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {4},
     year = {2013},
     doi = {10.1214/12-AIHP498},
     mrnumber = {3127916},
     zbl = {1283.60017},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/12-AIHP498/}
}
TY  - JOUR
AU  - Ganesan, Ghurumuruhan
TI  - Size of the giant component in a random geometric graph
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2013
SP  - 1130
EP  - 1140
VL  - 49
IS  - 4
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/12-AIHP498/
DO  - 10.1214/12-AIHP498
LA  - en
ID  - AIHPB_2013__49_4_1130_0
ER  - 
%0 Journal Article
%A Ganesan, Ghurumuruhan
%T Size of the giant component in a random geometric graph
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2013
%P 1130-1140
%V 49
%N 4
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/12-AIHP498/
%R 10.1214/12-AIHP498
%G en
%F AIHPB_2013__49_4_1130_0
Ganesan, Ghurumuruhan. Size of the giant component in a random geometric graph. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 4, pp. 1130-1140. doi : 10.1214/12-AIHP498. https://www.numdam.org/articles/10.1214/12-AIHP498/

[1] B. Bollobas and O. Riordan. Percolation. Cambridge Univ. Press, New York, 2006. | MR

[2] M. Franceschetti, O. Dousse, D. N. C. Tse and P. Thiran. Closing gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inform. Theory 53 (2007) 1009-1018. | MR

[3] G. Grimmett. Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin, 1999. | MR

[4] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless networks. In Stochastic Analysis, Control, Optimization and Applications 547-566. Systems Control Found. Appl. Birkhäuser, Boston, MA, 1999. | MR

[5] S. Muthukrishnan and G. Pandurangan. The bin-covering technique for thresholding random geometric graph properties. In Proc. SODA 989-998. ACM, New York, 2005. | MR

[6] M. Penrose. Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford, 2003. | MR

  • Barthelemy, Marc Proximity Graphs, Spatial Networks (2022), p. 295 | DOI:10.1007/978-3-030-94106-2_15
  • Ganesan, Ghurumuruhan Stretch and Diameter in Random Geometric Graphs, Algorithmica, Volume 80 (2018) no. 1, p. 300 | DOI:10.1007/s00453-016-0253-5
  • Janssen, Jeannette; Mehrabian, Abbas Rumors Spread Slowly in a Small-World Spatial Network, SIAM Journal on Discrete Mathematics, Volume 31 (2017) no. 4, p. 2414 | DOI:10.1137/16m1083256
  • Ganesan, Ghurumuruhan Infection Spread in Random Geometric Graphs, Advances in Applied Probability, Volume 47 (2015) no. 1, p. 164 | DOI:10.1239/aap/1427814586
  • Janssen, Jeannette; Mehrabian, Abbas Rumours Spread Slowly in a Small World Spatial Network, Algorithms and Models for the Web Graph, Volume 9479 (2015), p. 107 | DOI:10.1007/978-3-319-26784-5_9
  • Fagnani, Fabio; Fosson, Sophie M.; Ravazzi, Chiara Some Introductory Notes on Random Graphs, Mathematical Foundations of Complex Networked Information Systems, Volume 2141 (2015), p. 1 | DOI:10.1007/978-3-319-16967-5_1
  • Liu, Junbiao; Jin, Xinyu; Jiang, Lurong; Xia, Yongxiang; Ouyang, Bo; Dong, Fang; Lang, Yicong; Zhang, Wenping Threshold for the Outbreak of Cascading Failures in Degree-Degree Uncorrelated Networks, Mathematical Problems in Engineering, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/752893
  • Jiang, Lurong; Jin, Xinyu; Xia, Yongxiang; Ouyang, Bo; Wu, Duanpo; Chen, Xi A Scale-Free Topology Construction Model for Wireless Sensor Networks, International Journal of Distributed Sensor Networks, Volume 10 (2014) no. 8, p. 764698 | DOI:10.1155/2014/764698

Cité par 8 documents. Sources : Crossref