Nous considérons l’équation de Schrödinger linéaire avec les conditions aux limites périodiques, perturbée par une force aléatoire et amortie par un terme quasi linéaire:
We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping:
Mots clés : complex Ginzburg-Landau equation, small nonlinearity, stationary measures, averaging, effective equations
@article{AIHPB_2013__49_4_1033_0, author = {Kuksin, Sergei B.}, title = {Weakly nonlinear stochastic {CGL} equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1033--1056}, publisher = {Gauthier-Villars}, volume = {49}, number = {4}, year = {2013}, doi = {10.1214/11-AIHP482}, mrnumber = {3127912}, zbl = {1280.35144}, language = {en}, url = {http://www.numdam.org/articles/10.1214/11-AIHP482/} }
TY - JOUR AU - Kuksin, Sergei B. TI - Weakly nonlinear stochastic CGL equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 1033 EP - 1056 VL - 49 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/11-AIHP482/ DO - 10.1214/11-AIHP482 LA - en ID - AIHPB_2013__49_4_1033_0 ER -
Kuksin, Sergei B. Weakly nonlinear stochastic CGL equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 4, pp. 1033-1056. doi : 10.1214/11-AIHP482. http://www.numdam.org/articles/10.1214/11-AIHP482/
[1] On finite-dimensional projections of distributions for solutions of randomly forced PDEs. Ann. Inst. Henri Poincarè Probab. Stat. 43 (2007) 399-415. | MR
, , and .[2] Mathematical Aspects of Classical and Celestial Mechanics, 3rd edition. Springer, Berlin, 2006. | MR
, and .[3] Ergodicity for the weakly damped stochastic non-linear Shrödinger equations. J. Evol. Equ. 5 (2005) 317-356. | MR
and .[4] Random Perturbations of Dynamical Systems, 2nd edition. Springer, New York, 1998. | MR
and .[5] Exponential mixing properties of stochastic PDE's through asymptotic coupling. Probab. Theory Related Fields 124 (2002) 345-380. | MR
.[6] Strong nonresonance of Schrödinger operators and an averaging theorem. Phys. D 86 (1995) 349-362. | MR
and .[7] Brownian Motion and Stochastic Calculus, 2nd edition. Springer, Berlin, 1991. | MR
and .[8] On the avaraging principle for Ito stochastic differential equations. Kybernetika 4 (1968) 260-279 (in Russian).
.[9] Damped-driven KdV and effective equations for long-time behaviour of its solutions. Geom. Funct. Anal. 20 (2010) 1431-1463. | MR
.[10] Khasminskii-Whitham averaging for randomly perturbed KdV equation. J. Math. Pures Appl. 89 (2008) 400-428. | MR
and .[11] Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys. 213 (2000) 291-330. | MR
and .[12] Randomly forced CGL equation: Stationary measures and the inviscid limit. J. Phys. A 37 (2004) 1-18. | MR
and .[13] Mathematics of two-dimensional turbulence. Preprint, 2012. Available at www.math.polytechnique.fr/~kuksin/books.html.
and .[14] Multiphase Averaging for Classical Systems. Springer, New York-Berlin-Heidelberg, 1988. | MR
and .[15] Wave Turbulence. Springer, Berlin, 2011. | MR
.[16] Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 417-454. | MR
.[17] Inverse Spectral Theory. Academic Press, Boston, 1987. | MR
and .[18] Ergodicity for a class of Markov processes and applications to randomly forced PDE's. II. Discrete Contin. Dyn. Syst. 6 (2006) 911-926. | MR
.[19] Existence et unicité de diffusion à valeurs dans un espace de Hilbert. Ann. Inst. Henri Poincaré Probab. Stat. 10 (1974) 55-88. | Numdam | MR
.Cité par Sources :