L’hystérésis dynamique est un phénomène qu’on observe dans les systèmes ferromagnétiques au-dessous de la temperature critique, en réponse à des variations adiabatiques du champ magnétique extérieur. Nous étudions le problème dans le contexte du modéle d’Ising de champ moyen avec la dynamique de Glauber, en montrant que, pour des fréquences d’oscillations du champ magnétique d’ordre de , avec la taille du système, la boucle d’hystérésis « critique » devient aléatoire.
Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order , the size of the system, the “critical” hysteresis loop becomes random.
Mots-clés : hysteresis, Ising, mean field Glauber dynamics, macroscopic fluctuations
@article{AIHPB_2013__49_2_307_0, author = {Carinci, Gioia}, title = {Random hysteresis loops}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {307--339}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP461}, mrnumber = {3088372}, zbl = {1277.82035}, language = {en}, url = {http://www.numdam.org/articles/10.1214/11-AIHP461/} }
Carinci, Gioia. Random hysteresis loops. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 307-339. doi : 10.1214/11-AIHP461. http://www.numdam.org/articles/10.1214/11-AIHP461/
[1] Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52 (1995) 6550-6568.
and .[2] Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Related Fields 122 (2002) 341-388. | MR | Zbl
and .[3] A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential. Ann. Appl. Probab. 12 (2002) 1419-1470. | MR | Zbl
and .[4] The effect of additive noise on dynamical hysteresis. Nonlinearity 15 (2002) 605-632. | MR | Zbl
and .[5] Hysteresis in Magnetism. Academic Press, Boston, 1998.
.[6] The Science of Hysteresis, Mathematical Modeling and Applications, Vol. I. Elsevier, Amsterdam, 2006. | MR | Zbl
and .[7] Convergence of Probability Measures. Wiley, New York, 1999. | MR | Zbl
.[8] Stochastic effects in critical regimes. Ph.D. thesis, Università degli Studi dell'Aquila, 2010.
.[9] Scaling law for dynamical hysteresis. Phys. Rev. Lett. 65 (1990) 1873-1876.
, , and .[10] Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Phys. Rev. E 63 (2000) 016120.
, , and .[11] Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Phys. Rev. E 66 (2002) 056127. | MR
, and .[12] On the supremum of a Gaussian process. Sankhya A 32 (1970) 369-378. | MR | Zbl
and .[13] Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab. 12 (1999) 971-984. | MR | Zbl
.[14] Sample behaviour of Gaussian processes. In Proceedings of the 6th Berkeley Symposium on Mathematics, Statistic and Probability, Vol. 2 423-441. Univ. California Press, Berkeley, CA, 1972. | MR | Zbl
and .[15] Stochastic hysteresis and resonance in a kinetic Ising system. Phys. Rev. E 57 (1998) 6512-6533.
, and .[16] Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition. Phys. Rev. Lett. 81 (1998) 834-837.
, and .[17] Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition. Phys. Rev. E 59 (1999) 2710-2729.
, and .[18] Convergence of Stochastic Processes. Springer, New York, 1984. | MR | Zbl
.[19] Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin, 2009. | MR | Zbl
.[20] Magnetic hysteresis in two model spin systems. Phys. Rev. B 42-1 (1990) 856-884.
, and .[21] Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A 41 (1990) 4251-4254.
and .[22] Differential Models of Hysteresis. Springer, Berlin, 1994. | MR | Zbl
.[23] Hysteresis loop area of the Ising model. Phys. Rev. B 70 (2004) 132403.
, and .Cité par Sources :