On considère des matrices de covariance empirique complexes MN = (1/N)YY* où Y est une matrice de taille N × p dont les coefficients Yij, 1 ≤ i ≤ N, 1≤j ≤ p, sont des variables aléatoires i.i.d. de loi F. Sous certaines hypothèses de régularité et de décroissance sur F, on montre l'universalité de certaines statistiques locales de valeurs propres au milieu du spectre quand N → ∞ et limN→∞ p/N = γ pour tout réel γ ∈ (0, ∞).
We consider complex sample covariance matrices MN = (1/N)YY* where Y is a N × p random matrix with i.i.d. entries Yij, 1 ≤ i ≤ N, 1 ≤ j ≤ p, with distribution F. Under some regularity and decay assumptions on F, we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where N → ∞ and limN→∞ p/N = γ for any real number γ ∈ (0, ∞).
Mots-clés : random matrix, bulk universality, sample covariance matrices
@article{AIHPB_2012__48_1_80_0, author = {P\'ech\'e, Sandrine}, title = {Universality in the bulk of the spectrum for complex sample covariance matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {80--106}, publisher = {Gauthier-Villars}, volume = {48}, number = {1}, year = {2012}, doi = {10.1214/11-AIHP442}, mrnumber = {2919199}, zbl = {1238.60010}, language = {en}, url = {http://www.numdam.org/articles/10.1214/11-AIHP442/} }
TY - JOUR AU - Péché, Sandrine TI - Universality in the bulk of the spectrum for complex sample covariance matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 80 EP - 106 VL - 48 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/11-AIHP442/ DO - 10.1214/11-AIHP442 LA - en ID - AIHPB_2012__48_1_80_0 ER -
%0 Journal Article %A Péché, Sandrine %T Universality in the bulk of the spectrum for complex sample covariance matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 80-106 %V 48 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/11-AIHP442/ %R 10.1214/11-AIHP442 %G en %F AIHPB_2012__48_1_80_0
Péché, Sandrine. Universality in the bulk of the spectrum for complex sample covariance matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 1, pp. 80-106. doi : 10.1214/11-AIHP442. http://www.numdam.org/articles/10.1214/11-AIHP442/
[1] Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. | MR | Zbl
and .[2] Convergence rate of expected spectral distributions of large random matrices. II Sample covariance matrices. Ann. Probab. 21 (1993) 649-672. | MR | Zbl
.[3] Remarks on the convergence rate of the spectral distributions of Wigner matrices. J. Theoret. Probab. 12 (1999) 301-311. | MR | Zbl
, and .[4] Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. LVIII (2005) 1-42. | MR | Zbl
and .[5] Spectral form factor in random matrix theory. Phys. Rev. E 55 (1997) 4067-4083. | MR
and .[6] Correlations of nearby levels induced by a random potential. Nucl. Phys. B 479 (1996) 697-706. | MR | Zbl
and .[7] Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics 3. American Mathematical Society, Providence, RI, 1999. | MR | Zbl
.[8] Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (1999) 1335-1425. | MR | Zbl
, , , and .[9] Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 (1999) 1491-1552. | MR | Zbl
, , , and .[10] A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 (1962) 1191-1198. | MR | Zbl
.[11] Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287 (2009) 641-655. | MR | Zbl
, and .[12] Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37 (2009) 815-852. | MR | Zbl
, and .[13] Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Notices 2010 (2010) 436-479. | MR | Zbl
, and .[14] Bulk universality for Wigner matrices. Comm. Pure Appl. Math. 63 (2010) 895-925. | MR | Zbl
, , , and .[15] Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Research Letters 17 (2010) 667-674. | MR | Zbl
, , , , and .[16] Concentration of the spectral measure for large random matrices. Electron. Comm. Probab. 5 (2000) 119-136. | EuDML | MR | Zbl
and .[17] Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215 (2001) 683-705. | MR | Zbl
.[18] The distribution of eigenvalues for some sets of random matrices. Math. Sb. 72 (1967) 507-536. | MR | Zbl
and .[19] Random Matrices. Academic Press, New York, 1991. | MR | Zbl
.[20] Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivariate Anal. 55 (1995) 331-339. | MR | Zbl
.[21] Asymptotics and Special Functions. Computer Science and Applied Mathematics. Academic Press, New York-London, 1974. | MR | Zbl
.[22] Random matrices: Universality of local eigenvalue statistics. Preprint. Available at arxiv:0906.0510. | MR | Zbl
and .[23] Random covariance matrices: Universality of local statistics of eigenvalues. Preprint. Available at arXiv:0912.0966. | MR | Zbl
and .Cité par Sources :