Nous considérons un modèle d'interfaces de type gradient indexé par le réseau avec une interaction donnée par la pertubation non convexe d'un potentiel convexe. En utilisant une technique qui découple les sites pairs et impairs, nous démontrons pour une classe de potentiels non convexes l'unicité de la composante ergodique, de la mesure de Gibbs du gradient, la décroissance des covariances, la loi limite centrale et la stricte convexité de la tension superficielle.
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for -Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.
Mots clés : effective non-convex gradient interface models, uniqueness of ergodic component, decay of covariances, scaling limit, surface tension
@article{AIHPB_2012__48_3_819_0, author = {Cotar, Codina and Deuschel, Jean-Dominique}, title = {Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {819--853}, publisher = {Gauthier-Villars}, volume = {48}, number = {3}, year = {2012}, doi = {10.1214/11-AIHP437}, mrnumber = {2976565}, zbl = {1247.60133}, language = {en}, url = {http://www.numdam.org/articles/10.1214/11-AIHP437/} }
TY - JOUR AU - Cotar, Codina AU - Deuschel, Jean-Dominique TI - Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 819 EP - 853 VL - 48 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/11-AIHP437/ DO - 10.1214/11-AIHP437 LA - en ID - AIHPB_2012__48_3_819_0 ER -
%0 Journal Article %A Cotar, Codina %A Deuschel, Jean-Dominique %T Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 819-853 %V 48 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/11-AIHP437/ %R 10.1214/11-AIHP437 %G en %F AIHPB_2012__48_3_819_0
Cotar, Codina; Deuschel, Jean-Dominique. Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 819-853. doi : 10.1214/11-AIHP437. http://www.numdam.org/articles/10.1214/11-AIHP437/
[1] Unpublished manuscript.
, and .[2] Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields 139 (2007) 1-39. | MR | Zbl
and .[3] Scaling limit for a class of gradient fields with non-convex potentials. Ann. Probab. 39 (2011) 224-251. | MR | Zbl
and .[4] The ergodic theorem for additive cocycles of or . Ergodic Theory Dynam. Systems 11 (1991) 19-39. | MR | Zbl
and .[5] The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistics Institute 393-404. 1975. | MR | Zbl
, and .[6] Lectures on the renormalization group. In Statistical Mechanics 7-93. S. Sheffield and T. Spencer (Eds). IAS/Park City Mathematics Ser. Amer. Math. Soc., Provodence, RI, 2009. | MR | Zbl
.[7] Grad perturbations of massless Gaussian fields. Comm. Math. Phys. 129 (1990) 351-392. | MR | Zbl
and .[8] Strict convexity of the free energy for non-convex gradient models at moderate . Comm. Math. Phys. 286 (2009) 359-376. | MR | Zbl
, and .[9] Existence of random gradient states. Ann. Appl. Probab. 22 (2012) 1650-1692. | MR | Zbl
and .[10] Uniqueness of random gradient states. Unpublished manuscript.
and .[11] On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to interface model. Probab. Theory Related Fields 133 (2005) 358-390. | MR | Zbl
and .[12] Algebraic decay of attractive critical processes on the lattice. Ann. Probab. 22 (1994) 264-283. | MR | Zbl
.[13] The random walk representation for interacting diffusion processes. In Interacting Stochastic Systems 377-393. Springer, Berlin, 2005. | MR | Zbl
.[14] Large deviations and concentration properties for interface models. Probab. Theory Related Fields 117 (2000) 49-111. | MR | Zbl
, and .[15] On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys. 81 (1981) 277-298. | MR
and .[16] Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50 (1976) 79-95. | MR
, and .[17] The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81 (1981) 527-602. | MR
and .[18] On the statistical mechanics of Coulomb and dipole gases. J. Stat. Phys. 24 (1981) 617-701. | MR
and .[19] Motion by mean curvature from the Ginzburg-Landau interface model. Comm. Math. Phys. 185 (1997) 1-36. | MR | Zbl
and .[20] Stochastic interface models. In Lectures on Probability Theory and Statistics 102-274. Lect. Notes in Math. 1869. Springer, Berlin, 2005. | MR | Zbl
.[21] Gibbs Measures and Phase Transitions. De Gruyer, Berlin, 1988. | MR | Zbl
.[22] Equilibrium fluctuations for interface model. Ann. Probab. 29 (2001) 1138-1172. | MR | Zbl
, and .[23] On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | MR | Zbl
and .[24] Rosenthal's inequality for LPQD sequences. Statist. Probab. Lett. 42 (1999) 139-144. | MR | Zbl
.[25] On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183 (1997) 55-84. | MR | Zbl
and .[26] Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications. Asterisque 304. SMF, Paris, 2005. | Numdam | MR | Zbl
.[27] Localization and delocalization of random interfaces. Probab. Surv. 3 (2006) 112-169. | MR | Zbl
.Cité par Sources :