Stationary distributions for jump processes with memory
Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 609-630.

Nous proposons d’étudier un processus à sauts Z avec une mesure de sauts déterminée par un processus S représentant une “mémoire”. L’espace d’états de (Z,S) est le produit Cartesien du cercle trigonométrique et de l’axe réel. Nous démontrons que la distribution stationnaire de (Z,S) est la mesure produit d’une loi uniforme et d’une loi Gaussienne.

We analyze a jump processes Z with a jump measure determined by a “memory” process S. The state space of (Z,S) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of (Z,S) is the product of the uniform probability measure and a Gaussian distribution.

DOI : 10.1214/11-AIHP428
Classification : 60J35, 60H10, 60G51, 60J75, 60J55
Mots clés : stationary distribution, stable Lévy process, process with memory
@article{AIHPB_2012__48_3_609_0,
     author = {Burdzy, K. and Kulczycki, T. and Schilling, R. L.},
     title = {Stationary distributions for jump processes with memory},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {609--630},
     publisher = {Gauthier-Villars},
     volume = {48},
     number = {3},
     year = {2012},
     doi = {10.1214/11-AIHP428},
     mrnumber = {2976556},
     zbl = {1263.60072},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/11-AIHP428/}
}
TY  - JOUR
AU  - Burdzy, K.
AU  - Kulczycki, T.
AU  - Schilling, R. L.
TI  - Stationary distributions for jump processes with memory
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2012
SP  - 609
EP  - 630
VL  - 48
IS  - 3
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/11-AIHP428/
DO  - 10.1214/11-AIHP428
LA  - en
ID  - AIHPB_2012__48_3_609_0
ER  - 
%0 Journal Article
%A Burdzy, K.
%A Kulczycki, T.
%A Schilling, R. L.
%T Stationary distributions for jump processes with memory
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2012
%P 609-630
%V 48
%N 3
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/11-AIHP428/
%R 10.1214/11-AIHP428
%G en
%F AIHPB_2012__48_3_609_0
Burdzy, K.; Kulczycki, T.; Schilling, R. L. Stationary distributions for jump processes with memory. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 609-630. doi : 10.1214/11-AIHP428. http://www.numdam.org/articles/10.1214/11-AIHP428/

[1] M. Barlow, A. Grigor'Yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 (2009) 135-157. | MR | Zbl

[2] R. Bass, K. Burdzy, Z. Chen and M. Hairer. Stationary distributions for diffusions with inert drift. Probab. Theory Related Fields 146 (2010) 1-47. | MR | Zbl

[3] K. Burdzy, T. Kulczycki and R. Schilling. Stationary distributions for jump processes with inert drift. Preprint, 2010. Available at arXiv:1009.2347.

[4] K. Burdzy and D. White. A Gaussian oscillator. Electron. Commun. Probab. 9 (2004) 92-95. | MR | Zbl

[5] K. Burdzy and D. White. Markov processes with product-form stationary distribution. Electron. Commun. Probab. 13 (2008) 614-627. | MR | Zbl

[6] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl

[7] N. Ikeda, N. Nagasawa and S. Watanabe. A construction of Markov processes by piecing out. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966) 370-375. | MR | Zbl

[8] P.-A. Meyer. Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier (Grenoble) 25 (1975) 464-497. | Numdam | MR | Zbl

[9] Ya. G. Sinai. Topics in Ergodic Theory. Princeton Univ. Press, Princeton, NJ, 1994. | MR | Zbl

Cité par Sources :