Nous étudions l'entropie de la trace d'une marche aléatoire simple et symétrique de longueur n sur ℤd. Nous montrons que si d≥3, cette entropie est d'ordre n, tandis que pour d=2 elle est d'ordre n/log2n. Ces valeurs proviennent essentiellement de la taille de la frontière de la trace.
We study the entropy of the set traced by an n-step simple symmetric random walk on ℤd. We show that for d≥3, the entropy is of order n. For d=2, the entropy is of order n/log2n. These values are essentially governed by the size of the boundary of the trace.
@article{AIHPB_2010__46_4_1080_0, author = {Benjamini, Itai and Kozma, Gady and Yadin, Ariel and Yehudayoff, Amir}, title = {Entropy of random walk range}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1080--1092}, publisher = {Gauthier-Villars}, volume = {46}, number = {4}, year = {2010}, doi = {10.1214/09-AIHP345}, mrnumber = {2744887}, zbl = {1208.82046}, language = {en}, url = {http://www.numdam.org/articles/10.1214/09-AIHP345/} }
TY - JOUR AU - Benjamini, Itai AU - Kozma, Gady AU - Yadin, Ariel AU - Yehudayoff, Amir TI - Entropy of random walk range JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 1080 EP - 1092 VL - 46 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/09-AIHP345/ DO - 10.1214/09-AIHP345 LA - en ID - AIHPB_2010__46_4_1080_0 ER -
%0 Journal Article %A Benjamini, Itai %A Kozma, Gady %A Yadin, Ariel %A Yehudayoff, Amir %T Entropy of random walk range %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 1080-1092 %V 46 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/09-AIHP345/ %R 10.1214/09-AIHP345 %G en %F AIHPB_2010__46_4_1080_0
Benjamini, Itai; Kozma, Gady; Yadin, Ariel; Yehudayoff, Amir. Entropy of random walk range. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 4, pp. 1080-1092. doi : 10.1214/09-AIHP345. http://www.numdam.org/articles/10.1214/09-AIHP345/
[1] Elements of Information Theory. Wiley, New York, 1991. | MR | Zbl
and .[2] Intersections of Random Walks. Springer, New York, 1996. | Zbl
.[3] Intersection-equivalence of Brownian paths and certain branching processes. Comm. Math. Phys. 177 (1996) 417-434. | MR | Zbl
.[4] Random Walk in Random and Non-Random Environments. World Scientific, Hackensack, NJ, 2005. | MR | Zbl
.[5] Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. | MR | Zbl
and .[6] Entropy of random walk range on uniformly transient and on uniformly recurrent graphs. Preprint. Available at http://arxiv.org/abs/1001.0355. | MR
.Cité par Sources :