On considère un modèle discret pour un polymère semi-flexible et hétérogène. Le bruit thermique et le caractère hétérogène du polymère (le désordre) sont modélisés en termes de rotations aléatoires. Nous nous concentrons sur le régime de désordre gélé, c'est-à-dire, l'analyse est effectuée pour une réalisation fixée du désordre. Les modèles semi-flexibles diffèrent sensiblement des marches aléatoires à petite échelle, mais à grande échelle un comportement brownien apparaît. En exploitant des techniques de calcul tensoriel et d'analyse de Fourier non-commutative, nous établissons le caractère brownien du modèle à grande échelle et nous obtenons une expression pour la constante de diffusion. Nous donnons aussi des conditions qui entraînent des propriétés quantitatives de mélange.
We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative Fourier analysis, we establish the brownian character of the model on large scales and we obtain an expression for the diffusion constant. We moreover give conditions yielding quantitative mixing properties.
Mots-clés : heteropolymer, semiflexible chain, disorder, persistence length, large scale limit, tensor analysis, non-commutative Fourier analysis
@article{AIHPB_2010__46_1_97_0, author = {Caravenna, Francesco and Giacomin, Giambattista and Gubinelli, Massimiliano}, title = {Large scale behavior of semiflexible heteropolymers}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {97--118}, publisher = {Gauthier-Villars}, volume = {46}, number = {1}, year = {2010}, doi = {10.1214/08-AIHP310}, mrnumber = {2641772}, zbl = {1192.82041}, language = {en}, url = {http://www.numdam.org/articles/10.1214/08-AIHP310/} }
TY - JOUR AU - Caravenna, Francesco AU - Giacomin, Giambattista AU - Gubinelli, Massimiliano TI - Large scale behavior of semiflexible heteropolymers JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 97 EP - 118 VL - 46 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/08-AIHP310/ DO - 10.1214/08-AIHP310 LA - en ID - AIHPB_2010__46_1_97_0 ER -
%0 Journal Article %A Caravenna, Francesco %A Giacomin, Giambattista %A Gubinelli, Massimiliano %T Large scale behavior of semiflexible heteropolymers %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 97-118 %V 46 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/08-AIHP310/ %R 10.1214/08-AIHP310 %G en %F AIHPB_2010__46_1_97_0
Caravenna, Francesco; Giacomin, Giambattista; Gubinelli, Massimiliano. Large scale behavior of semiflexible heteropolymers. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 1, pp. 97-118. doi : 10.1214/08-AIHP310. http://www.numdam.org/articles/10.1214/08-AIHP310/
[1] Stretching a heteropolymer. Europhys. Lett. 42 (1998) 97-102.
, and .[2] Polymers as self-avoiding walks. Ann. Probab. 9 (1981) 537-556. | MR | Zbl
.[3] Scaling Concepts in Polymer Physics. Cornell Univ. Press, Ithaca, NY, 1979.
.[4] Measure Theory. Graduate Texts in Mathematics 18. Springer, Berlin, 1974. | Zbl
.[5] Abstract Harmonic Analysis I. Grundlehren der Mathematischen Wissenschaften 115. Springer, Berlin, 1963. | Zbl
and .[6] Abstract Harmonic Analysis II. Grundlehren der Mathematischen Wissenschaften 152. Springer, Berlin, 1970. | MR | Zbl
and .[7] The central limit theorem for random motions for d dimensional Euclidean space. Ann. Probab. 1 (1973) 603-612. | MR | Zbl
.[8] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. | MR | Zbl
and .[9] Bending and twisting elasticity of DNA. Macromolecules 27 (1994) 981-988.
and .[10] Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. USA 94 (1997) 14418-14422.
and .[11] Random walk on a sphere and on a Riemannian manifold. Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci. 252 (1960) 317-356. | MR | Zbl
and .[12] Diffusions, Markov Processes and Martingales 2. Cambridge Mathematical Library. Cambridge Univ. Press, 2000. (Itô Calculus, 2nd edition.) | MR | Zbl
and .[13] Random rotations: Characters and random walks on SO(N). Ann. Probab. 22 (1994) 398-423. | MR | Zbl
.[14] Théorème central-limite pour le groupe des déplacements de ℝd. Ann. Inst. H. Poincaré Probab. Statist. 10 (1974) 391-398. | Numdam | MR | Zbl
.[15] Formation and positioning of nucleosomes: Effect of sequence-dependent long-range correlated structural disorder. Eur. Phys. J. E 19 (2006) 263-277.
, , and .[16] Generalized theory of semiflexible polymers. Phys. Rev. E 73 (2006) 031906.
and .[17] Conformational statistics of semiflexible macromolecular chains with internal joints. Macromolecules 39 (2006) 1950-1960. | MR
and .Cité par Sources :