Les mesures sur [0, 1] auto-similaires en loi sont limites de processus multiplicatifs construits à partir de poids aléatoires distribués sur les sous-intervalles b-adiques de [0, 1]. Ces poids sont i.i.d., positifs et d'espérance 1/b. Il est naturel d'étendre la construction à des poids prenant des valeurs négatives. On obtient alors des martingales à valeurs dans les fonctions continues sur [0, 1]. Nous nous intéressons, pour H∈(0, 1), à la martingale (Bn)n≥1 de ce type construite en prenant des poids à valeurs dans {-b-H, b-H}, afin que Bn converge presque sûrement uniformément vers une fonction B auto-similaire en loi dont la régularité Höldérienne et les propriétés fractales soient comparables à celles du mouvement brownien fractionnaire d'exposant H. C'est bien le cas lorsque H∈(1/2, 1), et la construction fournit alors un nouvel exemple de loi invariante par moyenne pondérée aléatoire. Cette loi satisfait la même équation fonctionnelle qu'une loi stable symétrique usuelle d'indice 1/H. Si H∈(0, 1/2], Bn diverge presque sûrement, mais il existe une normalisation naturelle par une suite (an)n≥1 telle que la marche aléatoire corrélée normalisée Bn/an converge en loi vers la restriction à [0, 1] du mouvement brownien standard. Des théorèmes limites sont également associés au cas H>1/2.
Statistically self-similar measures on [0, 1] are limit of multiplicative cascades of random weights distributed on the b-adic subintervals of [0, 1]. These weights are i.i.d., positive, and of expectation 1/b. We extend these cascades naturally by allowing the random weights to take negative values. This yields martingales taking values in the space of continuous functions on [0, 1]. Specifically, we consider for each H∈(0, 1) the martingale (Bn)n≥1 obtained when the weights take the values -b-H and b-H, in order to get Bn converging almost surely uniformly to a statistically self-similar function B whose Hölder regularity and fractal properties are comparable with that of the fractional brownian motion of exponent H. This indeed holds when H∈(1/2, 1). Also the construction introduces a new kind of law, one that it is stable under random weighted averaging and satisfies the same functional equation as the standard symmetric stable law of index 1/H. When H∈(0, 1/2], to the contrary, Bn diverges almost surely. However, a natural normalization factor an makes the normalized correlated random walk Bn/an converge in law, as n tends to ∞, to the restriction to [0, 1] of the standard brownian motion. Limit theorems are also associated with the case H>1/2.
Mots-clés : random functions, martingales, central limit theorem, brownian motion, laws stable under random weighted mean, fractals, Hausdorff dimension
@article{AIHPB_2009__45_4_1116_0, author = {Barral, Julien and Mandelbrot, Beno{\^\i}t}, title = {Fractional multiplicative processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1116--1129}, publisher = {Gauthier-Villars}, volume = {45}, number = {4}, year = {2009}, doi = {10.1214/08-AIHP198}, mrnumber = {2572167}, zbl = {1201.60035}, language = {en}, url = {http://www.numdam.org/articles/10.1214/08-AIHP198/} }
TY - JOUR AU - Barral, Julien AU - Mandelbrot, Benoît TI - Fractional multiplicative processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 1116 EP - 1129 VL - 45 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/08-AIHP198/ DO - 10.1214/08-AIHP198 LA - en ID - AIHPB_2009__45_4_1116_0 ER -
%0 Journal Article %A Barral, Julien %A Mandelbrot, Benoît %T Fractional multiplicative processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 1116-1129 %V 45 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/08-AIHP198/ %R 10.1214/08-AIHP198 %G en %F AIHPB_2009__45_4_1116_0
Barral, Julien; Mandelbrot, Benoît. Fractional multiplicative processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1116-1129. doi : 10.1214/08-AIHP198. http://www.numdam.org/articles/10.1214/08-AIHP198/
[1] Random self-similar multifractals. Math. Nachr. 181 (1996) 5-42. | MR | Zbl
and .[2] Continuity of the multifractal spectrum of a statistically self-similar measure. J. Theoret. Probab. 13 (2000) 1027-1060. | MR | Zbl
.[3] Random multiplicative multifractal measures. Proc. Sympos. Pure Math. 72 3-90. AMS, Providence, RI, 2004. | MR | Zbl
and .[4] The singularity spectrum of Lévy processes in multifractal time. Adv. Math. 214 (2007) 437-468. | MR | Zbl
and .[5] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[6] Convergence of Probability Measures, 2nd edition. Probability and Statistics. Wiley, New York, 1999. | MR | Zbl
.[7] Large deviations for multiplicative chaos. Comm. Math. Phys. 147 (1992) 329-342. | MR | Zbl
and .[8] Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. Springer, New York, 2007. | MR | Zbl
, , , , and .[9] Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 (1983) 275-301. | MR | Zbl
and .[10] Nonincrease everywhere of the Brownian motion process. Proc. 4th Berkeley Sympos. Math. Stat. Prob. II (1961) 103-116. | MR | Zbl
, and .[11] A simple construction of the fractional Brownian motion. Stochastic Process Appl. 109 (2004) 203-223. | MR | Zbl
.[12] The multifractal spectrum of statistically self-similar measures. J. Theoret. Probab. 7 (1994) 681-702. | MR | Zbl
.[13] Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, New Jersey, 2003. | MR | Zbl
.[14] Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990) 261-285. | Numdam | MR | Zbl
.[15] Multifractal dimensions and scaling exponents for strongly bounded random fractals. Ann. Appl. Probab. 2 (1992) 819-845. | MR | Zbl
and .[16] The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791-800. | MR | Zbl
.[17] The multifractal nature of Lévy processes. Probab. Theory Related Fields 114 (1999) 207-227. | MR | Zbl
.[18] Multiplications aléaroires et dimensions de Hausdorff. Ann. Inst. H. Poincaré Probab Statist. 23 (1987) 289-296. | Numdam | MR | Zbl
.[19] J. Peyrière. Sur certaines martingales de Benoît Mandelbrot. Adv. Math. 22 (1976) 131-145. | MR | Zbl
.[20] Brownian Motion and Stochastic Calculus. Springer, New York, 1988. | MR | Zbl
and .[21] Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Doklady) Acad. URSS (N.S.) 26 (1940) 115-118. | JFM | MR
.[22] Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stochastic Process. Appl. 95 (2001) 83-107. | MR | Zbl
.[23] Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl
and .[24] Multiplications aléatoire itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris 278 (1974) 289-292, 355-358. | Zbl
.[25] Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 (1974) 331-358. | Zbl
.[26] Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179 (1996) 681-702. | MR | Zbl
.[27] Statistical estimation for multiplicative cascades. Ann. Statist. 28 (2000) 1533-1560. | MR | Zbl
and .[28] Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 (1975) 287-302. | MR | Zbl
.Cité par Sources :