Nous prouvons un genre d'inégalité de Sobolev logarithmique qui montre que l'information de Fisher libre domine l'entropie de micro-états libre adaptée aux projections dans le cas de deux projections.
We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.
Mots-clés : logarithmic Sobolev inequality, free entropy, mutual free Fisher information
@article{AIHPB_2009__45_1_239_0, author = {Hiai, Fumio and Ueda, Yoshimichi}, title = {A {log-Sobolev} type inequality for free entropy of two projections}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {239--249}, publisher = {Gauthier-Villars}, volume = {45}, number = {1}, year = {2009}, doi = {10.1214/08-AIHP164}, mrnumber = {2500237}, zbl = {1178.46066}, language = {en}, url = {http://www.numdam.org/articles/10.1214/08-AIHP164/} }
TY - JOUR AU - Hiai, Fumio AU - Ueda, Yoshimichi TI - A log-Sobolev type inequality for free entropy of two projections JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 239 EP - 249 VL - 45 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/08-AIHP164/ DO - 10.1214/08-AIHP164 LA - en ID - AIHPB_2009__45_1_239_0 ER -
%0 Journal Article %A Hiai, Fumio %A Ueda, Yoshimichi %T A log-Sobolev type inequality for free entropy of two projections %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 239-249 %V 45 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/08-AIHP164/ %R 10.1214/08-AIHP164 %G en %F AIHPB_2009__45_1_239_0
Hiai, Fumio; Ueda, Yoshimichi. A log-Sobolev type inequality for free entropy of two projections. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 1, pp. 239-249. doi : 10.1214/08-AIHP164. http://www.numdam.org/articles/10.1214/08-AIHP164/
[1] Diffusion hypercontractives. Séminaire Probabilités XIX 177-206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR | Zbl
and .[2] Free Brownian motion, free stochastic calculus and random matrices. In Free Probability Theory 1-19. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc. Providence, RI, 1997. | MR | Zbl
.[3] Logarithmic Sobolev inequalities, matrix models and free entropy. Acta Math. Sinica 19 (2003) 497-506. | MR | Zbl
.[4] Large deviation bounds for matrix Brownian motion. Invent. Math. 152 (2003) 433-459. | MR | Zbl
, and .[5] Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Related Fields 133 (2005) 315-344. | MR | Zbl
.[6] Riemannian Geometry, 2nd edition. Universitext, Springer, Berlin, 1990. | MR | Zbl
, and .[7] The Semicircle Law, Free Random Variables and Entropy. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
and .[8] Large deviations for functions of two random projection matrices. Acta Sci. Math. (Szeged) 72 (2006) 581-609. | MR | Zbl
and .[9] Free logarithmic Sobolev inequality on the unit circle. Canad. Math. Bull. 49 (2006) 389-406. | MR | Zbl
, and .[10] Notes on microstate free entropy of projections. Publ. Res. Inst. Math. Sci. 44 (2008), 49-89. | MR | Zbl
and .[11] Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973) 227-251. | MR | Zbl
, and .[12] A (one-dimensional) free Brunn-Minkowski inequality. C. R. Math. Acad. Sci. Paris 340 (2005) 301-304. | MR | Zbl
.[13] Unitary representations of infinite dimensional pairs (g, k) and the formalism of R. Howe. In Representation of Lie Groups and Related Topics 269-463. A. M. Vershik and D. P. Zhelobenko (Eds). Adv. Stud. Contemp. Math. 7. Gordon and Breach, New York, 1990. | MR | Zbl
.[14] Logarithmic Potentials with External Fields. Springer, Berlin, 1997. | MR | Zbl
and .[15] Topics in Optimal Transportation. Amer. Math. Soc., Providence, RI, 2003. | MR | Zbl
.[16] The analogues of entropy and of Fisher's information measure in free probability theory, I. Comm. Math. Phys. 155 (1993) 71-92. | MR | Zbl
.[17] The analogues of entropy and of Fisher's information measure in free probability theory, II. Invent. Math. 118 (1994) 411-440. | MR | Zbl
.[18] The analogues of entropy and of Fisher's information measure in free probability theory, IV: Maximum entropy and freeness. In Free Probability Theory 293-302. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
.[19] The analogues of entropy and of Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms. Invent. Math. 132 (1998) 189-227. | MR | Zbl
.[20] The analogue of entropy and of Fisher's information measure in free probability theory VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101-166. | MR | Zbl
.[21] Free Random Variables. Amer. Math. Soc., Providence, RI, 1992. | MR | Zbl
, and .Cité par Sources :