Dans ce travail, nous considérons un processus de naissance et de mort de générateur et de probabilité invariante réversible . Étant données une fonction strictement croissante , et la norme lipschitzienne par rapport à , nous trouvons une représentation explicite de . En guise d’une application typique, nous retrouvons une formule variationnelle de M. F. Chen pour le trou spectral de dans . De plus, par la décomposition des martingales progressive-rétrogrades de Lyons-Zheng, nous obtenons des inégalités de concentration convexe pour des fonctionnelles additives de processus de naissance et de mort.
In this paper, we consider a birth-death process with generator and reversible invariant probability . Given an increasing function and the associated Lipschitz norm , we find an explicit formula for . As a typical application, with spectral theory, we revisit one variational formula of M. F. Chen for the spectral gap of in . Moreover, by Lyons-Zheng’s forward-backward martingale decomposition theorem, we get convex concentration inequalities for additive functionals of birth-death processes.
Mots-clés : Birth-death process, spectral gap, Lipschitz function, Poisson equation, convex concentration inequality
@article{AIHPB_2009__45_1_58_0, author = {Liu, Wei and Ma, Yutao}, title = {Spectral gap and convex concentration inequalities for birth-death processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {58--69}, publisher = {Gauthier-Villars}, volume = {45}, number = {1}, year = {2009}, doi = {10.1214/07-AIHP149}, mrnumber = {2500228}, zbl = {1172.60023}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP149/} }
TY - JOUR AU - Liu, Wei AU - Ma, Yutao TI - Spectral gap and convex concentration inequalities for birth-death processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 58 EP - 69 VL - 45 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP149/ DO - 10.1214/07-AIHP149 LA - en ID - AIHPB_2009__45_1_58_0 ER -
%0 Journal Article %A Liu, Wei %A Ma, Yutao %T Spectral gap and convex concentration inequalities for birth-death processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 58-69 %V 45 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP149/ %R 10.1214/07-AIHP149 %G en %F AIHPB_2009__45_1_58_0
Liu, Wei; Ma, Yutao. Spectral gap and convex concentration inequalities for birth-death processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 1, pp. 58-69. doi : 10.1214/07-AIHP149. http://www.numdam.org/articles/10.1214/07-AIHP149/
[1] Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | MR | Zbl
and .[2] Estimation of spectral gap for Markov chains. Acta Math. Sin. New Ser. 12 (1996) 337-360. | MR | Zbl
.[3] Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. Sin. (A) 42 (1999) 805-815. | MR | Zbl
.[4] Explicit bounds of the first eigenvalue. Sci. China (A) 43 (2000) 1051-1059. | MR | Zbl
.[5] Variational formulas and approximation theorems for the first eigenvalue. Sci. China (A) 44 (2001) 409-418. | MR | Zbl
.[6] From Markov Chains to Non-equilibrium Particle Systems, 2nd edition. Springer, 2004. | MR | Zbl
.[7] Eigenvalues, Inequalities and Ergodic Theory. Springer, 2005. | MR | Zbl
.[8] Application of coupling method to the first eigenvalue on manifold. Sci. Sin. (A) 23 (1993) 1130-1140 (Chinese Edition); 37 (1994) 1-14 (English Edition). | MR | Zbl
and .[9] Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (1997) 1239-1267. | MR | Zbl
and .[10] Spectral gap of one dimensional diffusions in Lipschitz norm and application to log-Sobolev inequalities for Gibbs measures. Preprint, 2007.
and .[11] Transportation-information inequalities for Markov processes. Preprint, 2007. | Zbl
, , and .[12] Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58 (1963) 13-30. | MR | Zbl
.[13] A new Poisson-type deviation inequality for Markov jump process with positive Wasserstein curvature. Preprint, 2007. | MR
.[14] Convex concentration inequalities and forward/backward stochastic calculus. Electron. J. Probab. 11 (2006) 486-512. | MR | Zbl
, and .[15] A crossing estimate for the canonical process on a Dirichlet space and a tightness result. Astérique 157-158 (1988) 249-271. | Numdam | Zbl
and .[16] Grandes déviations et concentration convexe en temps continu et discret. PhD thesis, Université de La Rochelle (France) et Université de Wuhan (Chine), 2006. Available at http://perso.univ-lr.fr/yma/thesis.pdf.
.[17] An exemple of application of discrete Hardy's inequalities. Markov Process. Related Fields 5 (1999) 319-330. | MR | Zbl
.[18] Birth-Death Processes and Markov Chains. Academic Press of China, Beijing, 2005 (in Chinese). | Zbl
and .[19] Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23 (1995) 420-445. | MR | Zbl
.[20] Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 121-141. | Numdam | MR | Zbl
.[21] Essential spectral radius for Markov semigroups (I): discrete time case. Probab. Theory Related Fields 128 (2004) 255-321. | MR | Zbl
.[22] Functional Analysis, 6th edition. Spring, 1999.
.Cité par Sources :