Les fonctionnelles en probabilite géométrique s’expriment souvent comme des sommes de fonctions bornées qui possèdent la fonction de stabilisation. Les méthodes de cumulants et les modifications exponentielles des mesures démontrent que ces fonctionnelles vérifient le principe des déviations modérées. Ceci donne des principes des déviations modérées et des lois de logarithme itéré pour des modèles de ‘packing aléatoires’ ainsi que pour des statistiques de modèles de ‘germe-grain’ et de graphes avec plus proches voisins.
Functionals in geometric probability are often expressed as sums of bounded functions exhibiting exponential stabilization. Methods based on cumulant techniques and exponential modifications of measures show that such functionals satisfy moderate deviation principles. This leads to moderate deviation principles and laws of the iterated logarithm for random packing models as well as for statistics associated with germ-grain models and nearest neighbor graphs.
Mots-clés : moderate deviations, laws of the iterated logarithm, random euclidean graphs, random sequential packing
@article{AIHPB_2008__44_3_422_0, author = {Baryshnikov, Yu and Eichelsbacher, P. and Schreiber, T. and Yukich, J. E.}, title = {Moderate deviations for some point measures in geometric probability}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {422--446}, publisher = {Gauthier-Villars}, volume = {44}, number = {3}, year = {2008}, doi = {10.1214/07-AIHP137}, mrnumber = {2451052}, zbl = {1175.60015}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP137/} }
TY - JOUR AU - Baryshnikov, Yu AU - Eichelsbacher, P. AU - Schreiber, T. AU - Yukich, J. E. TI - Moderate deviations for some point measures in geometric probability JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 422 EP - 446 VL - 44 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP137/ DO - 10.1214/07-AIHP137 LA - en ID - AIHPB_2008__44_3_422_0 ER -
%0 Journal Article %A Baryshnikov, Yu %A Eichelsbacher, P. %A Schreiber, T. %A Yukich, J. E. %T Moderate deviations for some point measures in geometric probability %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 422-446 %V 44 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP137/ %R 10.1214/07-AIHP137 %G en %F AIHPB_2008__44_3_422_0
Baryshnikov, Yu; Eichelsbacher, P.; Schreiber, T.; Yukich, J. E. Moderate deviations for some point measures in geometric probability. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 422-446. doi : 10.1214/07-AIHP137. http://www.numdam.org/articles/10.1214/07-AIHP137/
[1] Exponential tightness and projective systems in large deviation theory. In Festschrift for Lucien Le Cam 143-156. Springer, New York, 1997. | MR | Zbl
.[2] Normal approximation for random sums. Adv. in Appl. Probab. 38 (2006) 693-728. | MR | Zbl
and .[3] Gaussian fields and random packing. J. Statist. Phys. 111 (2003) 443-463. | MR | Zbl
and .[4] Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 (2005) 213-253. | MR | Zbl
and .[5] Central limit theory for the number of seeds in a growth model in ℝd with inhomogeneous Poisson arrivals. Ann. Appl. Probab. 7 (1997) 802-814. | MR | Zbl
and .[6] Central limit theorem for germination-growth models in ℝd with non-Poisson locations. Adv. in Appl. Probab. 33 (2001) 751-755. | MR | Zbl
and .[7] Packing random intervals on-line. Algorithmica 22 (1998) 448-476. | MR | Zbl
, , and .[8] On the “parking” problem. MTA Mat. Kut. Int. Kzl. (Publications of the Math. Res. Inst. of the Hungarian Academy of Sciences) 9 (1964) 209-225. | MR | Zbl
and .[9] An Introduction to the Theory of Point Processes. Springer, New York, 1988. | MR | Zbl
and .[10] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR | Zbl
and .[11] Large Deviations. Academic Press, Boston, MA, 1989. | MR | Zbl
and .[12] Large deviations for products of empirical measures in strong topologies and applications. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 779-797. | Numdam | MR | Zbl
and .[13] Rank-dependent moderate deviations of U-empirical measures in strong topologies. Probab. Theory Related Fields 126 (2003) 61-90. | MR | Zbl
and .[14] Measures on contour, polymer or animal models. A probabilistic approach. Markov Process. Related Fields 4 (1998) 479-497. | MR | Zbl
, and .[15] Loss network representation of Ising contours. Ann. Probab. 29 (2001) 902-937. | MR | Zbl
, and .[16] Perfect simulation for interacting point processes, loss networks and Ising models. Stochastic Process Appl. 102 (2002) 63-88. | MR | Zbl
, and .[17] Percolation. Grundlehren der mathematischen Wissenschaften 321, Springer, Berlin, 1999. | MR | Zbl
.[18] Introduction to the Theory of Coverage Processes. Wiley, New York, 1988. | MR | Zbl
.[19] Central limit theorem for a class of random measures associated with germ-grain models. Adv. in Appl. Probab. 31 (1999) 283-314. | MR | Zbl
and .[20] Perfect simulation for marked point processes. Compt. Statist. Data Anal. 51 (2006) 679-698. | MR | Zbl
and .[21] Domination by product measures. Ann. Probab. 25 (1997) 71-95. | MR | Zbl
, and .[22] Gibbs Random Fields. Kluwer, Dordrecht, 1991. | MR | Zbl
and .[23] Random Geometric Graphs. Clarendon Press, Oxford, 2003. | MR | Zbl
.[24] Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Probab. 33 (2005) 1945-1991. | MR | Zbl
.[25] Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13 (2007) 1124-1150. | MR | Zbl
.[26] Gaussian limits for random geometric measures. Electronic J. Probab. 12 (2007) 989-1035. | MR | Zbl
.[27] Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11 (2001) 1005-1041. | MR | Zbl
and .[28] Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12 (2002) 272-301. | MR | Zbl
and .[29] Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 (2003) 277-303. | MR | Zbl
and .[30] Normal approximation in geometric probability. In Stein's Method and Applications. A. D. Barbour and Louis H. Y. Chen (Eds) 37-58. Institute for Mathematical Sciences, National University of Singapore, 2005. Available at http://www.lehigh.edu/~jey0/publications.html. | MR
and .[31] Théorie des éléments saillants d'une suite d'observations. In Colloquium on Combinatorial Methods in Probability Theory 104-115. Mathematical Institut, Aarhus Universitet, Denmark, 1962. | Zbl
,[32] Limit theorems on large deviations. In: Limit Theorems of Probability Theory. Y. V. Prokhorov and V. Statulevicius (Eds). Springer, 2000. | Zbl
and .[33] Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Probab. 36 (2008) 363-396. | MR | Zbl
and .[34] Stochastic Geometry and Its Applications, 2nd edition. Wiley, Chichester, 1995. | MR | Zbl
, and .Cité par Sources :