Pour la transformation adique sur l'espace des chemins infinis dans le graphe associé aux nombres Euleriens, il n'existe qu'une seule mesure de probabilité ergodique invariante avec support total. Ce résultat peut justifier en partie une hypothèse fréquente sur l'équidistribution des permutations aléatoires.
There is only one fully supported ergodic invariant probability measure for the adic transformation on the space of infinite paths in the graph that underlies the eulerian numbers. This result may partially justify a frequent assumption about the equidistribution of random permutations.
Mots clés : random permutations, eulerian numbers, adic transformation, invariant measures, ergodic transformations, Bratteli diagrams, rises and falls
@article{AIHPB_2008__44_5_876_0, author = {Frick, Sarah Bailey and Petersen, Karl}, title = {Random permutations and unique fully supported ergodicity for the {Euler} adic transformation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {876--885}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP133}, mrnumber = {2453848}, zbl = {1175.37005}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP133/} }
TY - JOUR AU - Frick, Sarah Bailey AU - Petersen, Karl TI - Random permutations and unique fully supported ergodicity for the Euler adic transformation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 876 EP - 885 VL - 44 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP133/ DO - 10.1214/07-AIHP133 LA - en ID - AIHPB_2008__44_5_876_0 ER -
%0 Journal Article %A Frick, Sarah Bailey %A Petersen, Karl %T Random permutations and unique fully supported ergodicity for the Euler adic transformation %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 876-885 %V 44 %N 5 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP133/ %R 10.1214/07-AIHP133 %G en %F AIHPB_2008__44_5_876_0
Frick, Sarah Bailey; Petersen, Karl. Random permutations and unique fully supported ergodicity for the Euler adic transformation. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5, pp. 876-885. doi : 10.1214/07-AIHP133. http://www.numdam.org/articles/10.1214/07-AIHP133/
[1] Ergodicity of the adic transformation on the Euler graph. Math. Proc. Cambridge Philos. Soc. 141 (2006) 231-238. | MR | Zbl
, , and .[2] Asymptotic properties of Eulerian numbers. Z. Wahrsch. Verw. Gebiete 23 (1972) 47-54. | MR | Zbl
, , and .[3] Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edition, 1974. The Art of Finite and Infinite Expansions. | MR | Zbl
.[4] On the application of the theory of probability to two combinatorial problems involving permutations. In Proceedings of the Seventh Conference on Probability Theory (Braşov, 1982). VNU Sci. Press, Utrecht, 1985. | MR | Zbl
.[5] Limited scope adic transformations. In preparation. | Zbl
.[6] Dynamical properties of some non-stationary, non-simple Bratteli-Vershik systems. Ph.D. dissertation, Univ. North Carolina, Chapel Hill (2006).
.[7] Connections between adic transformations and random walks. In progress.
and .[8] Joint distribution of rises and falls. Ann. Inst. Statist. Math. 52 (2000) 415-425. | MR | Zbl
and .[9] On the exact distributions of Eulerian and Simon Newcomb numbers associated with random permutations. Statist. Probab. Lett. 42 (1999) 115-125. | MR | Zbl
, and .[10] Topological orbit equivalence and C*-crossed products. J. Reine Angew. Math. 469 (1995) 51-111. | MR | Zbl
, and .[11] Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3 (1992) 827-864. | MR | Zbl
, and .[12] Dynamical properties of the Pascal adic and related systems. Ph.D. dissertation, Univ. North Carolina, Chapel Hill (2002).
.[13] Dynamical properties of the Pascal adic transformation. Ergodic Theory Dynam. Systems 25 (2005) 227-256. | MR | Zbl
and .[14] Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 37 (1982). | MR | Zbl
, and .[15] Random walk generated by random permutations of {1, 2, 3, …, n+1}. J. Phys. A: Math. Gen. 37 (2004) 6221-6241. | MR | Zbl
and .[16] Symmetric Gibbs measures. Trans. Amer. Math. Soc. 349 (1997) 2775-2811. | MR | Zbl
and .[17] Description of invariant measures for the actions of some infinite-dimensional groups. Dokl. Akad. Nauk SSSR 218 (1974) 749-752. | MR | Zbl
.[18] Asymptotic theory of characters of the symmetric group. Funkts. Anal. Prilozhen. 15 (1981) 15-27. | MR | Zbl
and .[19] Locally semisimple algebras, combinatorial theory and the K0-functor. J. Soviet Math. 38 (1987) 1701-1733. | Zbl
and .Cité par Sources :