Désignons par le -drap Brownien fractionnaire de paramètre défini par , où sont des copies indépendantes du drap Brownien fractionnaire à valeurs réelles . Nous montrons que le temps local de est bicontinu lorsque . Cela résout une conjecture de Xiao et Zhang (Probab. Theory Related Fields 124 (2002)). Nous obtenons aussi des résultats fins concernant la régularité Hölderienne, locale et globale, du temps local. Ces résultats nous permettent d’étudier certaines propriétés analytiques et géométriques des trajectoires de .
Let be an -fractional brownian sheet with index defined by , where are independent copies of a real-valued fractional brownian sheet . We prove that if , then the local times of are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields 124 (2002)). We also establish sharp local and global Hölder conditions for the local times of . These results are applied to study analytic and geometric properties of the sample paths of .
Mots clés : fractional brownian sheet, Liouville fractional brownian sheet, fractional brownian motion, sectorial local nondeterminism, local times, joint continuity, Hölder conditions
@article{AIHPB_2008__44_4_727_0, author = {Ayache, Antoine and Wu, Dongsheng and Xiao, Yimin}, title = {Joint continuity of the local times of fractional brownian sheets}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {727--748}, publisher = {Gauthier-Villars}, volume = {44}, number = {4}, year = {2008}, doi = {10.1214/07-AIHP131}, mrnumber = {2446295}, zbl = {1180.60032}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP131/} }
TY - JOUR AU - Ayache, Antoine AU - Wu, Dongsheng AU - Xiao, Yimin TI - Joint continuity of the local times of fractional brownian sheets JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 727 EP - 748 VL - 44 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP131/ DO - 10.1214/07-AIHP131 LA - en ID - AIHPB_2008__44_4_727_0 ER -
%0 Journal Article %A Ayache, Antoine %A Wu, Dongsheng %A Xiao, Yimin %T Joint continuity of the local times of fractional brownian sheets %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 727-748 %V 44 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP131/ %R 10.1214/07-AIHP131 %G en %F AIHPB_2008__44_4_727_0
Ayache, Antoine; Wu, Dongsheng; Xiao, Yimin. Joint continuity of the local times of fractional brownian sheets. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 727-748. doi : 10.1214/07-AIHP131. http://www.numdam.org/articles/10.1214/07-AIHP131/
[1] The Geometry of Random Fields. Wiley, New York, 1981. | MR | Zbl
.[2] Drap Brownien fractionnaire. Potential Anal. 17 (2002) 31-43. | MR | Zbl
, and .[3] Asymptotic properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR | Zbl
and .[4] Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res. 42 (2006) W01415.
, and .[5] Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | MR | Zbl
.[6] Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR | Zbl
.[7] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | MR | Zbl
.[8] Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215-236. | MR | Zbl
and .[9] Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810-817. | MR | Zbl
and .[10] Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca, 2001) 127-166. Lecture Notes in Math. 1802. Springer, Berlin, 2002. | MR | Zbl
.[11] Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13 (2000) 357-382. | MR | Zbl
.[12] Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56 (1981) 195-228. | MR | Zbl
.[13] Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR | Zbl
and .[14] A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984) 86-107. | MR | Zbl
, and .[15] Inequalities. Cambridge Univ. Press, 1934. | JFM | Zbl
.[16] An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447-456. | MR | Zbl
.[17] Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. | MR | Zbl
.[18] Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 (2006) 817-843. | MR | Zbl
, and .[19] Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125-3151. | MR | Zbl
and .[20] Local times of additive Lévy processes. Stoch. Process. Appl. 104 (2003) 193-216. | MR | Zbl
, and .[21] Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14 (2001) 213-239. | MR | Zbl
and .[22] A relation between Hausdorff dimension and a condition on time sets for the image by the Brownian sheet to possess interior-points. Bull. London Math. Soc. 21 (1989) 179-185. | MR | Zbl
.[23] A law of the iterated logarithm for fractional Brownian motions. Preprint, 2005. | Zbl
and .[24] Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stochastics Stochastics Rep. 71 (2000) 141-163. | MR | Zbl
and .[25] Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | MR | Zbl
.[26] Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961) 1-31. | MR | Zbl
and .[27] Self-intersections of random fields. Ann. Probab. 12 (1984) 108-119. | MR | Zbl
.[28] Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767-775. | MR | Zbl
.[29] Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1-37. | MR | Zbl
and .[30] Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129-157. | MR | Zbl
.[31] Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV (2006) 157-193. | Numdam | MR | Zbl
.[32] Sample path properties of anisotropic Gaussian random fields. Submitted, 2007. | Zbl
.[33] Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204-226. | MR | Zbl
and .Cité par Sources :