Nous trouvons des formes limites pour une famille de mesures multiplicatives sur l’ensemble des partitions, induites par des fonctions génératrices exponentielles avec des paramètres d’expansion , où est une constante positive. Les mesures considérées sont associées aux modèles Maxwell-Boltzmann généralisés de la mécanique statistique, des processus de coagulation-fragmentation réversibles et des structures combinatoires connues sous le nom d’assemblées. Nous prouvons un théorème de limite centrale pour les fluctuations d’une partition qui est mise à l'échelle convenablement et choisie aléatoirement selon la mesure ci-dessus. Nous démontrons que, quand la taille des composantes dépasse la valeur seuil, l’indépendance des nombres de composants se transforme en leur indépendance conditionnelle. Entre autres, cet article traite, dans un cadre général, des relations entre la forme limite, le seuil et la congélation.
We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, , where is a positive constant. The measures considered are associated with the generalized Maxwell-Boltzmann models in statistical mechanics, reversible coagulation-fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition chosen randomly according to the above measure, from its limit shape. We demonstrate that when the component size passes beyond the threshold value, the independence of numbers of components transforms into their conditional independence (given their masses). Among other things, the paper also discusses, in a general setting, the interplay between limit shape, threshold and gelation.
Mots clés : Gibbs distributions on the set of integer partitions, limit shapes, random combinatorial structures and coagulation-fragmentation processes, local and integral central limit theorems
@article{AIHPB_2008__44_5_915_0, author = {Erlihson, Michael M. and Granovsky, Boris L.}, title = {Limit shapes of {Gibbs} distributions on the set of integer partitions : the expansive case}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {915--945}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP129}, mrnumber = {2453776}, zbl = {1181.60146}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP129/} }
TY - JOUR AU - Erlihson, Michael M. AU - Granovsky, Boris L. TI - Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 915 EP - 945 VL - 44 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP129/ DO - 10.1214/07-AIHP129 LA - en ID - AIHPB_2008__44_5_915_0 ER -
%0 Journal Article %A Erlihson, Michael M. %A Granovsky, Boris L. %T Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 915-945 %V 44 %N 5 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP129/ %R 10.1214/07-AIHP129 %G en %F AIHPB_2008__44_5_915_0
Erlihson, Michael M.; Granovsky, Boris L. Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5, pp. 915-945. doi : 10.1214/07-AIHP129. http://www.numdam.org/articles/10.1214/07-AIHP129/
[1] The Theory of Partitions, Vol. 2. Addison-Wesley, 1976. | MR | Zbl
.[2] Independent process appoximation for random combinatorial structures. Adv. Math. 104 (1994) 90-154. | MR | Zbl
and .[3] Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society Publishing House, Zurich, 2004. | MR | Zbl
, and .[4] Random combinatorial structures: The convergent case. J. Combin. Theory Ser. A 109 (2005) 203-220. | MR | Zbl
and .[5] Number Theoretic Density and Logical Limit Laws. Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl
.[6] Sufficient conditions for zero-one laws. Trans. Amer. Math. Soc. 354 (2002) 613-630. | MR | Zbl
.[7] Asymptotics for logical limit laws: When the growth of the components is in RT class. Trans. Amer. Math. Soc. 355 (2003) 3777-3794. | MR | Zbl
and .[8] Gibbs distributions for random partitions generated by a fragmentation process. J. Stat. Phys. 127 (2007) 381-418. | MR | Zbl
and .[9] Central limit theorem for random partitions under the Plancherel measure, preprint. Available at math.PR/0607635, 2006. | Zbl
and .[10] Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1995. | MR | Zbl
.[11] The equilibrium behaviour of reversible coagulation-fragmentation processes. J. Theoret. Probab. 12 (1999) 447-474. | MR | Zbl
, and .[12] Reversible coagulation-fragmentation processes and random combinatorial structures: Asymptotics for the number of groups. Random Structures Algorithms 25 (2004) 227-245. | MR | Zbl
and .[13] Asymptotic formula for a partition function of reversible coagulation-fragmentation processes. J. Israel Math. 130 (2002) 259-279. | MR | Zbl
and .[14] Clustering in coagulation-fragmentation processes, random combinatorial structures and additive number systems: Asymptotic formulae and limiting laws. Trans. Amer. Math. Soc. 357 (2005) 2483-2507. | MR | Zbl
and .[15] Partitions into distinct large parts. J. Aust. Math. Soc. (Ser. A) 57 (1994) 386-416. | MR | Zbl
and .[16] The structure of random partitions of large integers. Tran. Amer. Math. Soc. 337 (1993) 703-735. | MR | Zbl
.[17] Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 (2006) 5674-5685. | MR | Zbl
and .[18] Asymptotics of counts of small components in random structures and models of coagulation-fragmentation. Available at math.Pr/0511381, 2006. | Zbl
.[19] Asymptotic enumeration and logical limit laws for expansive multisets. J. London Math. Soc. (2) 73 (2006) 252-272. | MR | Zbl
and .[20] The noisy voter model. Stochastic Process. Appl. 55 (1995) 23-43. | MR | Zbl
and .[21] Additive and Cancellative Interacting Particle Systems. Springer, New York, 1979. | MR | Zbl
.[22] Exact solutions for random coagulation processes. Z. Phys. B - Cond. Matter. 58 (1985) 219-227.
, , and .[23] Foundations of Modern Probability. Springer, New York, 2001. | MR | Zbl
.[24] On some conditions for absence of a giant component in the generalized allocation scheme. Discrete Math. Appl. 12 (2002) 291-302. | MR | Zbl
.[25] Reversibility and Stochastic Networks. Wiley, New York, 1979. | MR | Zbl
.[26] Coherent random allocations, and the Ewens-Pitman formula, J. Math. Sci. 138 (2006) 5699-5710. | MR | Zbl
.[27] Mathematical Foundations of Quantum Statistics. Graylock Press, Albany, NY, 1960. | MR | Zbl
.[28] Random Graphs. Cambridge Univ. Press, 1999. | MR | Zbl
.[29] A variational problem for random Young tableaux. Adv. Math. 26 (1977) 206-222. | MR | Zbl
and .[30] Local limit theorems for sums of power series distributed random variables and for the number of components in labelled relational structures. Random Structures Algorithms 3 (1992) 404-426. | MR | Zbl
.[31] Probabilistic transforms for combinatorial urn models. Combin. Probab. Comput. 13 (2004) 645-675. | MR | Zbl
and .[32] Symmetric functions and random partitions. Symmetric Functions 2001: Surveys of Developments and Perspectives 223-252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Acad. Publ., Dordrecht, 2002. | MR | Zbl
.[33] Combinatorial Stochastic Processes. Springer, Berlin, 2006. | MR | Zbl
.[34] On a likely shape of the random Ferrers diagram. Adv. in Appl. Math. 18 (1997) 432-488. | MR | Zbl
.[35] On the distribution of the number of Young tableaux for a uniformly random diagram. Adv. in Appl. Math. 29 (2002) 184-214. | MR | Zbl
.[36] Identities arising from limit shapes of costrained randiom partitions, preprint, 2003.
.[37] Probability. Springer, New York, 1984. | MR | Zbl
.[38] Geometric variational problems of statistical mechanics and of combinatorics, probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000) 1364-1370. | MR | Zbl
.[39] Wulf construction in statistical mechanics and combinatorics. Russian Math. Surveys. 56 (2001) 709-738. | MR | Zbl
.[40] Logical limit laws for logarithmic structures. Math. Proc. Cambridge Philos. Soc. 140 (2005) 537-544. | MR | Zbl
.[41] Statistical mechanics and the partition of numbers. The form of the crystal surfaces. Proc. Cambridge Philos. Soc. 48 (1952) 683-697. | MR | Zbl
.[42] Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Dokl. Akad. Nauk SSSR 233 (1977) 1024-1027. | MR | Zbl
and .[43] Limit distribution of the energy of a quantum ideal gas from the viewpoint of the theory of partitions of natural numbers. Russian Math. Surveys 52 (1997) 139-146. | MR | Zbl
.[44] Statistical mechanics of combinatorial partitions and their limit configurations. Funct. Anal. Appl. 30 (1996) 90-105. | MR | Zbl
.[45] A local limit theorem for random partitions of natural numbers. Theory Probab. Appl. 44 (2000) 453-468. | MR | Zbl
, and .[46] The limit shape and fluctuations of random partitions of naturals with fixed number of summands. Mosc. Math. J. 1 (2001) 457-468. | MR | Zbl
and .[47] Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions. Comm. Math. Phys. 261 (2006) 759-769. | MR | Zbl
and .[48] Asymptotics of the uniform measure on the simplex, random compositions and partitions. Funct. Anal. Appl. 37 (2003) 39-48. | MR | Zbl
and .[49] Systems in Stochastic Equilibrium. Wiley, New York, 1986. | MR | Zbl
.[50] Asymptotics of random partitions of a set. J. Math. Sci. 87 (1997) 4124-4137. | MR | Zbl
.Cité par Sources :