Cet article est consacré à l’étude du théorème central limite, des déviations modérées et des lois du logarithme itéré pour l’énergie
In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the energy
Mots-clés : charged polymer, self-intersection local time, central limit theorem, moderate deviation, laws of the iterated logarithm
@article{AIHPB_2008__44_4_638_0, author = {Chen, Xia}, title = {Limit laws for the energy of a charged polymer}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {638--672}, publisher = {Gauthier-Villars}, volume = {44}, number = {4}, year = {2008}, doi = {10.1214/07-AIHP120}, mrnumber = {2446292}, zbl = {1178.60024}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP120/} }
TY - JOUR AU - Chen, Xia TI - Limit laws for the energy of a charged polymer JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 638 EP - 672 VL - 44 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP120/ DO - 10.1214/07-AIHP120 LA - en ID - AIHPB_2008__44_4_638_0 ER -
Chen, Xia. Limit laws for the energy of a charged polymer. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 638-672. doi : 10.1214/07-AIHP120. http://www.numdam.org/articles/10.1214/07-AIHP120/
[1] Self-intersection local times for random walk, and random walk in random scenery in dimension d≥5. Preprint, 2005. Available at http://arxiv.org/math.PR/0509721arXiv:math.PR/0509721. | MR
and .[2] Large deviation estimates for self-intersection local times for simple random walk in ℤ3. Probab. Theory Related Fields. To appear. | MR | Zbl
.[3] Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Electron. J. Probab. 11 (2006) 993-1030. | EuDML | MR | Zbl
, and .[4] A model of continuous polymers with random charges. J. Math. Phys. 38 (1997) 5143-5152. | MR | Zbl
and .[5] On the law of the iterated logarithm for local times of recurrent random walks. In High Dimensional Probability II (Seattle, WA, 1999) 249-259, 2000. | MR | Zbl
.[6] Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32 (2004) 3248-3300. | MR | Zbl
.[7] Moderate deviations and law of the iterated logarithm for intersections of the range of random walks. Ann. Probab. 33 (2005) 1014-1059. | MR | Zbl
.[8] Large and moderate deviations for intersection local times. Probab. Theory Related Fields 128 (2004) 213-254. | MR | Zbl
and .[9] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR | Zbl
and .[10] A model of directed walks with random self interactions. Europhys. Lett. 18 (1992) 361-366.
, and .[11] Low-temperature properties of directed walks with random self-interactions. J. Phys. A 27 (1994) 5485-5493. | MR | Zbl
and .[12] A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915-944. | MR | Zbl
and .[13] The range of transient random walk. J. Anal. Math. 24 (1971) 369-393. | MR | Zbl
and .[14] Further limit theorem for the range of random walk. J. Anal. Math. 27 (1974) 94-117. | MR | Zbl
and .[15] Asymptotic behavior of the local time of a recurrent random walk. Ann. Probab. 11 (1984) 64-85. | MR | Zbl
and .[16] Polymers with self-interactions. Europhys. Lett. 14 (1991) 421-426.
and .[17] The range of stable random walks. Ann. Probab. 19 (1991) 650-705. | MR | Zbl
and .[18] Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267-1279. | MR | Zbl
and .[19] Random Walks in Random and Non-Random Environments. World Scientific, London, 1990. | Zbl
.[20] Random walks and intersection local time. Ann. Probab. 18 (1990) 959-977. | MR | Zbl
.[21] Principles of Random Walk. Van Nostrand, Princeton, New Jersey, 1964. | MR | Zbl
.Cité par Sources :