Étant donné un ensemble fini ou dénombrable de nombres réel
Given any finite or countable collection of real numbers
Mots-clés : stochastic fixed point equation, weighted minima and maxima, weighted branching process, harmonic analysis on trees, Choquet-Deny theorem, Weibull distributions
@article{AIHPB_2008__44_1_89_0, author = {Alsmeyer, Gerold and R\"osler, Uwe}, title = {A stochastic fixed point equation for weighted minima and maxima}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {89--103}, publisher = {Gauthier-Villars}, volume = {44}, number = {1}, year = {2008}, doi = {10.1214/07-AIHP104}, mrnumber = {2451572}, zbl = {1176.60006}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP104/} }
TY - JOUR AU - Alsmeyer, Gerold AU - Rösler, Uwe TI - A stochastic fixed point equation for weighted minima and maxima JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 89 EP - 103 VL - 44 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP104/ DO - 10.1214/07-AIHP104 LA - en ID - AIHPB_2008__44_1_89_0 ER -
%0 Journal Article %A Alsmeyer, Gerold %A Rösler, Uwe %T A stochastic fixed point equation for weighted minima and maxima %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 89-103 %V 44 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP104/ %R 10.1214/07-AIHP104 %G en %F AIHPB_2008__44_1_89_0
Alsmeyer, Gerold; Rösler, Uwe. A stochastic fixed point equation for weighted minima and maxima. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 1, pp. 89-103. doi : 10.1214/07-AIHP104. https://www.numdam.org/articles/10.1214/07-AIHP104/
A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 (2005) 1047-1110. | MR | Zbl
and .A limit law for the root value of minimax trees. Electron. Comm. Probab. 10 (2005) 273-281. | MR | Zbl
, and .A stochastic maximin fixed point equation related to game tree evaluation. J. Appl. Probab. 44 (2007) 586-606. | MR | Zbl
and .A stochastic fixed point equation related to weighted branching with deterministic weights. Electron. J. Probab. 11 (2006) 27-56. | MR | Zbl
and .Sur l'equation de convolution μ=μ*σ. C. R. Acad. Sci. Paris 250 (1960) 799-801. | MR | Zbl
and .Stochastic fixed points for the maximum. In Mathematics and Computer Science III. M. Drmota, P. Flajolet, D. Gardy and B. Gittenberger (Eds) 325-338. Birkhäuser, Basel, 2004. | MR | Zbl
and .Analysis of algorithms by the contraction method: additive and max-recursive sequences. In Interacting Stochastic Systems. J. D. Deuschel and A. Greven (Eds) 435-450. Springer, Heidelberg, 2005. | MR | Zbl
and .- Stationary waiting time in parallel queues with synchronization, Mathematics of Operations Research, Volume 46 (2021) no. 1, pp. 1-27 | DOI:10.1287/moor.2019.1045 | Zbl:1481.60196
- Stochastic fixed-point equations, Stochastic Models, Volume 35 (2019) no. 3, pp. 238-251 | DOI:10.1080/15326349.2019.1578242 | Zbl:1479.60181
- The weighted branching process, Branching processes and their applications. Proceedings of the workshop, WBPA, Badajoz, Spain, April 7–10, 2015, Cham: Springer, 2016, pp. 219-236 | DOI:10.1007/978-3-319-31641-3_13 | Zbl:1354.60100
- Maximums on trees, Stochastic Processes and their Applications, Volume 125 (2015) no. 1, pp. 217-232 | DOI:10.1016/j.spa.2014.09.004 | Zbl:1316.60131
- Power Laws on Weighted Branching Trees, Random Matrices and Iterated Random Functions, Volume 53 (2013), p. 159 | DOI:10.1007/978-3-642-38806-4_8
- Implicit renewal theory and power tails on trees, Advances in Applied Probability, Volume 44 (2012) no. 2, pp. 528-561 | DOI:10.1239/aap/1339878723 | Zbl:1253.60076
- The functional equation of the smoothing transform, The Annals of Probability, Volume 40 (2012) no. 5, pp. 2069-2105 | DOI:10.1214/11-aop670 | Zbl:1266.39022
- Weighted branching and a pathwise renewal equation, Stochastic Processes and their Applications, Volume 119 (2009) no. 8, pp. 2579-2597 | DOI:10.1016/j.spa.2009.01.003 | Zbl:1169.60322
- A stochastic maximin fixed-point equation related to game tree evaluation, Journal of Applied Probability, Volume 44 (2007) no. 3, pp. 586-606 | DOI:10.1239/jap/1189717531 | Zbl:1136.60009
Cité par 9 documents. Sources : Crossref, zbMATH