@article{CML_2012__4_4_A3_0, author = {Ducros, Antoine}, title = {Espaces de {Berkovich,} polytopes, squelettes et th\'eorie des mod\`eles}, journal = {Confluentes Mathematici}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {4}, number = {4}, year = {2012}, doi = {10.1142/S1793744212500077}, language = {fr}, url = {http://www.numdam.org/articles/10.1142/S1793744212500077/} }
TY - JOUR AU - Ducros, Antoine TI - Espaces de Berkovich, polytopes, squelettes et théorie des modèles JO - Confluentes Mathematici PY - 2012 VL - 4 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744212500077/ DO - 10.1142/S1793744212500077 LA - fr ID - CML_2012__4_4_A3_0 ER -
%0 Journal Article %A Ducros, Antoine %T Espaces de Berkovich, polytopes, squelettes et théorie des modèles %J Confluentes Mathematici %D 2012 %V 4 %N 4 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744212500077/ %R 10.1142/S1793744212500077 %G fr %F CML_2012__4_4_A3_0
Ducros, Antoine. Espaces de Berkovich, polytopes, squelettes et théorie des modèles. Confluentes Mathematici, Tome 4 (2012) no. 4, article no. 1250007. doi : 10.1142/S1793744212500077. http://www.numdam.org/articles/10.1142/S1793744212500077/
[1] V. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, Vol. 33 (Amer. Math. Soc., 1990).
[2] V. Berkovich, Étale cohomology for non-archimedean analytic spaces, Inst. Hautes Etudes Sci. Publ. Math. 78 (1993) 5–161.
[3] V. Berkovich, Smooth p-adic spaces are locally contractible II, in Geometric Aspects of Dwork Theory (Walter de Gruyter & Co., 2004), pp. 293–370.
[4] R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984) 168–195.
[5] S. Bosch, S. Güntzer and U. Remmert, Non-Archimedean Analysis. A Systematic Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wis- senschaften, Vol. 261 (Springer-Verlag, 1984).
[6] A. Chambert-Loir et A. Ducros, Formes différentielles et courants sur les espaces de Berkovich, travail en cours.
[7] B. Conrad and M. Temkin, Non-Archimedean analytification of algebraic spaces, preprint.
[8] A. Ducros, Les espaces de Berkovich sont modérés, exposé 1056 du séminaire Bourbaki.
[9] A. Ducros, Image réciproque du squelette par un morphisme entre espaces de Berkovich de même dimension, Bull. Soc. Math. France 131 (2003) 483–506.
[10] A. Ducros, Parties semi-algébriques d’une variété algébrique p-adique, Manuscripta Math. 111 (2003) 513–528.
[11] A. Ducros, Variation de la dimension relative en géométrie analytique p-adique, Compositio. Math. 143 (2007) 1511–1532.
[12] A. Ducros, Toute forme modérément ramifiée d’un polydisque ouvert est triviale, à paraˆıtre dans Math. Z.
[13] A. Ducros, Flatness in non-Archimedean analytic geometry, preprint.
[14] D. Haskell, E. Hrushovski and D. Macpherson, Definable sets in algebraically closed valued fields : Elimination of imaginaries, J. Reine Angew. Math. 597 (2006) 175–236.
[15] E. Hrushovski and F. Loeser, Non-archimedean tame topology and stably dominated types, preprint.
[16] J. Poineau, Les espaces de Berkovich sont angéliques, prépublication.
[17] M. Temkin, On local properties of non-Archimedean analytic spaces, Math. Ann. 318 (2000) 585–607.
[18] M. Temkin, On local properties of non-Archimedean analytic spaces. II, Israel J. Math. 140 (2004) 1–27.
[19] M. Temkin, A new proof of the Gerritzen–Grauert theorem, Math. Ann. 333 (2005) 261–269.
Cité par Sources :