Espaces de Berkovich, polytopes, squelettes et théorie des modèles
Confluentes Mathematici, Tome 4 (2012) no. 4, article no. 1250007.
Publié le :
DOI : 10.1142/S1793744212500077
@article{CML_2012__4_4_A3_0,
     author = {Ducros, Antoine},
     title = {Espaces de {Berkovich,} polytopes, squelettes et th\'eorie des mod\`eles},
     journal = {Confluentes Mathematici},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {4},
     number = {4},
     year = {2012},
     doi = {10.1142/S1793744212500077},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1142/S1793744212500077/}
}
TY  - JOUR
AU  - Ducros, Antoine
TI  - Espaces de Berkovich, polytopes, squelettes et théorie des modèles
JO  - Confluentes Mathematici
PY  - 2012
VL  - 4
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://www.numdam.org/articles/10.1142/S1793744212500077/
DO  - 10.1142/S1793744212500077
LA  - fr
ID  - CML_2012__4_4_A3_0
ER  - 
%0 Journal Article
%A Ducros, Antoine
%T Espaces de Berkovich, polytopes, squelettes et théorie des modèles
%J Confluentes Mathematici
%D 2012
%V 4
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://www.numdam.org/articles/10.1142/S1793744212500077/
%R 10.1142/S1793744212500077
%G fr
%F CML_2012__4_4_A3_0
Ducros, Antoine. Espaces de Berkovich, polytopes, squelettes et théorie des modèles. Confluentes Mathematici, Tome 4 (2012) no. 4, article no. 1250007. doi : 10.1142/S1793744212500077. http://www.numdam.org/articles/10.1142/S1793744212500077/

[1] V. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, Vol. 33 (Amer. Math. Soc., 1990).

[2] V. Berkovich, Étale cohomology for non-archimedean analytic spaces, Inst. Hautes Etudes Sci. Publ. Math. 78 (1993) 5–161.

[3] V. Berkovich, Smooth p-adic spaces are locally contractible II, in Geometric Aspects of Dwork Theory (Walter de Gruyter & Co., 2004), pp. 293–370.

[4] R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984) 168–195.

[5] S. Bosch, S. Güntzer and U. Remmert, Non-Archimedean Analysis. A Systematic Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wis- senschaften, Vol. 261 (Springer-Verlag, 1984).

[6] A. Chambert-Loir et A. Ducros, Formes différentielles et courants sur les espaces de Berkovich, travail en cours.

[7] B. Conrad and M. Temkin, Non-Archimedean analytification of algebraic spaces, preprint.

[8] A. Ducros, Les espaces de Berkovich sont modérés, exposé 1056 du séminaire Bourbaki.

[9] A. Ducros, Image réciproque du squelette par un morphisme entre espaces de Berkovich de même dimension, Bull. Soc. Math. France 131 (2003) 483–506.

[10] A. Ducros, Parties semi-algébriques d’une variété algébrique p-adique, Manuscripta Math. 111 (2003) 513–528.

[11] A. Ducros, Variation de la dimension relative en géométrie analytique p-adique, Compositio. Math. 143 (2007) 1511–1532.

[12] A. Ducros, Toute forme modérément ramifiée d’un polydisque ouvert est triviale, à paraˆıtre dans Math. Z.

[13] A. Ducros, Flatness in non-Archimedean analytic geometry, preprint.

[14] D. Haskell, E. Hrushovski and D. Macpherson, Definable sets in algebraically closed valued fields : Elimination of imaginaries, J. Reine Angew. Math. 597 (2006) 175–236.

[15] E. Hrushovski and F. Loeser, Non-archimedean tame topology and stably dominated types, preprint.

[16] J. Poineau, Les espaces de Berkovich sont angéliques, prépublication.

[17] M. Temkin, On local properties of non-Archimedean analytic spaces, Math. Ann. 318 (2000) 585–607.

[18] M. Temkin, On local properties of non-Archimedean analytic spaces. II, Israel J. Math. 140 (2004) 1–27.

[19] M. Temkin, A new proof of the Gerritzen–Grauert theorem, Math. Ann. 333 (2005) 261–269.

Cité par Sources :