By introducing an unconventional realization of the Poincaré algebra of special relativity as conformal transformations, we show how it may occur as a dynamical symmetry algebra for ageing systems in non-equilibrium statistical physics and give some applications, such as the computation of two-time correlators. We also discuss infinite-dimensional extensions of in this setting. Finally, we construct canonical Appell systems, coherent states and Leibniz function for as a tool for bosonic quantization.
@article{CML_2012__4_4_A2_0, author = {Henkel, Malte and Schott, Ren\'e and Stoimenov, Stoimen and Unterberger, J\'er\'emie}, title = {The {Poincar\'e} algebra in the context of ageing systems: {Lie} structure, representations, {Appell} systems and coherent states}, journal = {Confluentes Mathematici}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {4}, number = {4}, year = {2012}, doi = {10.1142/S1793744212500065}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744212500065/} }
TY - JOUR AU - Henkel, Malte AU - Schott, René AU - Stoimenov, Stoimen AU - Unterberger, Jérémie TI - The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states JO - Confluentes Mathematici PY - 2012 VL - 4 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744212500065/ DO - 10.1142/S1793744212500065 LA - en ID - CML_2012__4_4_A2_0 ER -
%0 Journal Article %A Henkel, Malte %A Schott, René %A Stoimenov, Stoimen %A Unterberger, Jérémie %T The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states %J Confluentes Mathematici %D 2012 %V 4 %N 4 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744212500065/ %R 10.1142/S1793744212500065 %G en %F CML_2012__4_4_A2_0
Henkel, Malte; Schott, René; Stoimenov, Stoimen; Unterberger, Jérémie. The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states. Confluentes Mathematici, Tome 4 (2012) no. 4. doi : 10.1142/S1793744212500065. http://www.numdam.org/articles/10.1142/S1793744212500065/
[1] F. Avram and M. S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab. 15 (1987) 767–775.
[2] A. O. Barut, Conformal group → Schrödinger group → Dynamical group – the maxi- mal kinematical group of the massive Schrödinger particle, Helv. Phys. Acta 46 (1973) 496–503.
[3] F. Baumann, S. Stoimenov and M. Henkel, Local scale-invariances in the bosonic contact and pair-contact processes, J. Phys. A Math. Gen. 39 (2006) 4095–4118.
[4] C. D. Boyer, R. T. Sharp and P. Winternitz, Symmetry-breaking interactions for the time dependent Schrödinger equation, J. Math. Phys. 17 (1976) 1439–1451.
[5] A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43 (1994) 357–459.
[6] G. Burdet, M. Perrin and P. Sorba, About the non-relativistic structure of the con- formal algebra, Comm. Math. Phys. 34 (1973) 85–90.
[7] R. Cherniha and M. Henkel, The exotic conformal Galilei algebra and nonlinear partial differential equations, J. Math. Anal. Appl. 369 (2010) 120–132.
[8] L. Clavelli and P. Ramond, Group-theoretical construction of dual amplitudes, Phys. Rev. D 3 (1971) 988–990.
[9] L. F. Cugliandolo, Dynamics of glassy systems, in Slow Relaxation and non- equilibrium Dynamics in Condensed Matter, Les Houches Session 77, July 2002, eds. J.-L. Barrat, J. Dalibard, J. Kurchan, M. V. Feigel’man (Springer, 2003).
[10] C. Duval and P. A. Horv´athy, Non-relativistic conformal symmetries and Newton- Cartan structures, J. Phys. A: Math. Theor. 42 (2009) 465206.
[11] P. Feinsilver, Y. Kocik and R. Schott, Representations of the Schrödinger algebra and appell systems, Prog. Phys. 52 (2004) 343–359.
[12] P. Feinsilver and R. Schott, Algebraic Structures and Operator Calculus, Vol. 1: Rep- resentations and Probability Theory (Kluwer, 1993).
[13] P. Feinsilver and R. Schott, Algebraic Structures and Operator Calculus, Vol. 3: Rep- resentations of Lie Groups (Kluwer, 1996).
[14] P. Feinsilver and R. Schott, Appell systems on Lie groups, J. Th. Probab. 5 (1992) 251–281.
[15] D. B. Fuks, Cohohomology of infinite-dimensional Lie algebras, in Monographs in Contemporary Soviet Mathematics, Consultants Bureau (Springer, 1986).
[16] L. Guieu and C. Roger, L’algèbre et le groupe de Virasoro: Aspects géométriques et algébriques, généralisations, Publications CRM (Montreal Univ. Press, 2007).
[17] P. Havas and J. Plebanski, Conformal extensions of the Galilei group and their relation to the Schrödinger group, J. Math. Phys. 19 (1978) 482–488.
[18] M. Henkel, Schrödinger-invariance and strongly anisotropic critical systems, J. Stat. Phys. 75 (1994) 1023–1061.
[19] M. Henkel, Phenomenology of local scale-invariance: From conformal invariance to dynamical scaling, Nucl. Phys. B 641 (2002) 405–486.
[20] M. Henkel and J. Unterberger, Schrödinger-invariance and space-time symmetries, Nucl. Phys. B 660 (2003) 407–435.
[21] M. Henkel and J. Unterberger, Supersymmetric extensions of Schrödinger-invariance, Nucl. Phys. B 746 (2006) 155–201.
[22] M. Henkel, R. Schott, S. Stoimenov and J. Unterberger, On the dynamical symmetric algebra of ageing: Lie structure, representations and Appell systems, Quantum Probab. White Noise, 20 (2007) 233–240.
[23] Eds. M. Henkel, M. Pleimling and R. Sanctuary, Ageing and the Glass Transition, Lecture Notes in Physics, Vol. 716 (Springer-Verlag, 2007).
[24] M. Henkel and M. Pleimling, Non-equilibrium Phase Transitions Vol. 2: Ageing and Dynamical Scaling Far from Equilibrium (Springer, 2010).
[25] M. Henkel and S. Stoimenov, On non-local representations of the ageing algebra, Nucl. Phys. B 847 (2011) 612–627.
[26] C. G. Jacobi, Vorlesungen über Dynamik (1842/43), 4. Vorlesung, in Gesammelte Werke, eds. A Clebsch und E. Lottner (Akademie der Wissenschaften, 1866/1884).
[27] S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linearer par- tieller Differentialgleichungen, Arch. Math. Naturvidenskab. 6 (1881) 328.
[28] J. Lukierski, P. C. Stichel and W. J. Zakrewski, Exotic galilean conformal symmetry and its dynamical realisations, Phys. Lett. A 357 (2006) 1–5; Accelaration-extended galilean symmetries with central charges and their dynamical realizations, Phys. Lett. B 650 (2007) 203–207.
[29] U. Niederer, The maximal kinematical invariance group of the free Schrödinger equa- tion, Helv. Phys. Acta 45 (1972) 802–810.
[30] A. Picone and M. Henkel, Local scale-invariance and ageing in noisy systems, Nucl. Phys. B 688 (2004) 217–265.
[31] C. Roger and J. Unterberger, The Schrödinger–Virasoro Lie group and algebra: From geometry to representation theory, Ann. Inst. H. Poincaré 7 (2006) 1477–1529.
[32] S. Stoimenov and M. Henkel, Dynamical symmetries of semi-linear Schrödinger and diffusion equations, Nucl. Phys. B 723 (2005) 205–233.
[33] J. Unterberger and C. Roger, The Schrödinger–Virasoro Algebra (Springer, 2011).
[34] M. Virasoro, Subsidiary conditions and ghosts in dual-resonance models, Phys. Rev. D 1 (1970) 2933–2936.
Cité par Sources :