@article{CML_2012__4_1_A2_0, author = {D\"utsch, Michael}, title = {Connection between the renormalization groups of {St\"uckelberg{\textendash}Petermann} and {Wilson}}, journal = {Confluentes Mathematici}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {4}, number = {1}, year = {2012}, doi = {10.1142/S1793744212400014}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744212400014/} }
TY - JOUR AU - Dütsch, Michael TI - Connection between the renormalization groups of Stückelberg–Petermann and Wilson JO - Confluentes Mathematici PY - 2012 VL - 4 IS - 1 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744212400014/ DO - 10.1142/S1793744212400014 LA - en ID - CML_2012__4_1_A2_0 ER -
%0 Journal Article %A Dütsch, Michael %T Connection between the renormalization groups of Stückelberg–Petermann and Wilson %J Confluentes Mathematici %D 2012 %V 4 %N 1 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744212400014/ %R 10.1142/S1793744212400014 %G en %F CML_2012__4_1_A2_0
Dütsch, Michael. Connection between the renormalization groups of Stückelberg–Petermann and Wilson. Confluentes Mathematici, Tome 4 (2012) no. 1, article no. 1240001. doi : 10.1142/S1793744212400014. http://www.numdam.org/articles/10.1142/S1793744212400014/
[1] F. Brennecke and M. Dütsch, Removal of violations of the Master Ward Identity in perturbative QFT, Rev. Math. Phys. 20 (2008) 119–172.
[2] R. Brunetti, M. Dütsch and K. Fredenhagen, Perturbative algebraic quantum field theory and the renormalization groups, Adv. Theor. Math. Phys. 13 (2009) 1541–1599.
[3] R. Brunetti and K. Fredenhagen, Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds, Commun. Math. Phys. 208 (2000) 623.
[4] M. Dütsch and K. Fredenhagen, Algebraic quantum field theory, perturbation theory, and the loop expansion, Commun. Math. Phys. 219 (2001) 5.
[5] M. Dütsch and K. Fredenhagen, Perturbative algebraic field theory, and deformation quantization, Fields Inst. Commun. 30 (2001) 151–160.
[6] M. Dütsch and K. Fredenhagen, Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity, Rev. Math. Phys. 16 (2004) 1291–1348.
[7] M. Dütsch and K. Fredenhagen, Action Ward Identity and the Stückelberg– Petermann renormalization group, in Rigorous Quantum Field Theory, eds. A. Boutet de Monvel, D. Buchholz, D. Iagolnitzer and U. Moschella (Birkhäuser, 2006), pp. 113–123.
[8] H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann. Inst. H. Poincaré A 19 (1973) 211.
[9] S. Hollands and R. M. Wald, On the renormalization group in curved spacetime, Commun. Math. Phys. 237 (2003) 123–160.
[10] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edn. (Springer, 1990).
[11] G. Keller, C. Kopper and C. Schophaus, Perturbative renormalization with flow equations in Minkowski space, Helv. Phys. Acta 70 (1997) 247–274.
[12] J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B 231 (1984) 269–295.
[13] G. Popineau and R. Stora, A pedagogical remark on the main theorem of perturbative renormalization theory, unpublished preprint (1982).
[14] M. Salmhofer, Renormalization. An Introduction (Springer, 1999).
[15] R. Stora, Differential algebras in Lagrangean field theory, ETH-Zürich Lectures, January–February 1993.
[16] E. C. G. Stückelberg and A. Petermann, La normalisation des constantes dans la théorie des quanta, Helv. Phys. Acta 26 (1953) 499–520.
Cité par Sources :