On the gradient flow of a one-homogeneous functional
Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 617-635.
Publié le :
DOI : 10.1142/S1793744211000461
@article{CML_2011__3_4_617_0,
     author = {Briani, Ariela and Chambolle, Antonin and Novaga, Matteo and Orlandi, Giandomenico},
     title = {On the gradient flow of a one-homogeneous functional},
     journal = {Confluentes Mathematici},
     pages = {617--635},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {4},
     year = {2011},
     doi = {10.1142/S1793744211000461},
     language = {en},
     url = {http://www.numdam.org/articles/10.1142/S1793744211000461/}
}
TY  - JOUR
AU  - Briani, Ariela
AU  - Chambolle, Antonin
AU  - Novaga, Matteo
AU  - Orlandi, Giandomenico
TI  - On the gradient flow of a one-homogeneous functional
JO  - Confluentes Mathematici
PY  - 2011
SP  - 617
EP  - 635
VL  - 3
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://www.numdam.org/articles/10.1142/S1793744211000461/
DO  - 10.1142/S1793744211000461
LA  - en
ID  - CML_2011__3_4_617_0
ER  - 
%0 Journal Article
%A Briani, Ariela
%A Chambolle, Antonin
%A Novaga, Matteo
%A Orlandi, Giandomenico
%T On the gradient flow of a one-homogeneous functional
%J Confluentes Mathematici
%D 2011
%P 617-635
%V 3
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://www.numdam.org/articles/10.1142/S1793744211000461/
%R 10.1142/S1793744211000461
%G en
%F CML_2011__3_4_617_0
Briani, Ariela; Chambolle, Antonin; Novaga, Matteo; Orlandi, Giandomenico. On the gradient flow of a one-homogeneous functional. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 617-635. doi : 10.1142/S1793744211000461. http://www.numdam.org/articles/10.1142/S1793744211000461/

[1] D. R. Adams and L. I. Hedberg, Functions Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, Vol. 314 (Springer, 1996).

[2] W. K. Allard, Total variation regularization for image denoising. III. Examples, SIAM J. Imaging Sci. 2 (2009) 532–568.

[3] F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in RN , Math. Ann. 332 (2005) 329–366.

[4] S. Baldo, R. Jerrard, G. Orlandi and H. M. Soner, Convergence of Ginzburg–Landau functionals in 3-d superconductivity, arXiv:1102.4650.

[5] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN , J. Differ- ential Equations 184 (2002) 475–525.

[6] Yu. K. Belyaev, Continuity and Hölder’s conditions for sample functions of stationary Gaussian processes, in Proc. 4th Berkeley Symp. Math. Statist. and Prob., Vol. II (University of California Press, 1961), pp. 22–33.

[7] M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimen- sion, arXiv:1107.2153v2.

[8] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, 1973).

[9] L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998) 383–402.

[10] L. Caffarelli and A. Friedman, Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J. 28 (1979) 53–70.

[11] C. M. Elliott and V. Janovsk´y, A variational inequality approach to Hele–Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 93–107.

[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, 1983).

[13] B. Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele–Shaw flows, SIAM J. Math. Anal. 16 (1985) 279–300.

[14] K. Kielak, P. B. Mucha and P. Rybka, Almost classical solutions to the total variation flow, arXiv:1106.5369v1.

[15] C. I. Kim and A. Mellet, Homogenization of a Hele–Shaw problem in periodic and random media, Arch. Rat. Mech. Anal. 194 (2009) 507–530.

[16] D. Kinderlehrer and L. Nirenberg, The smoothness of the free boundary in the one phase Stefan problem, Comm. Pure Appl. Math. 31 (1978) 257–282.

[17] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equa- tions, University Lecture Series, Vol. 22 (Amer. Math. Soc., 2001).

[18] W. Ring, Structural properties of solutions to total variation regularization problems, M2AN Math. Model. Numer. Anal. 34 (2000) 799–810.

[19] J. F. Rodrigues, Variational Methods in the Stefan Problem, Lecture Notes in Math- ematics, Vol. 1584 (Springer, 1994), pp. 147–212.

[20] E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, Vol. 70 (Birkhäuser, 2007).

Cité par Sources :