@article{CML_2011__3_4_577_0, author = {Hrushovski, Ehud and Pillay, Anand}, title = {Affine {Nash} groups over real closed fields}, journal = {Confluentes Mathematici}, pages = {577--585}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {4}, year = {2011}, doi = {10.1142/S179374421100045X}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S179374421100045X/} }
TY - JOUR AU - Hrushovski, Ehud AU - Pillay, Anand TI - Affine Nash groups over real closed fields JO - Confluentes Mathematici PY - 2011 SP - 577 EP - 585 VL - 3 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S179374421100045X/ DO - 10.1142/S179374421100045X LA - en ID - CML_2011__3_4_577_0 ER -
%0 Journal Article %A Hrushovski, Ehud %A Pillay, Anand %T Affine Nash groups over real closed fields %J Confluentes Mathematici %D 2011 %P 577-585 %V 3 %N 4 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S179374421100045X/ %R 10.1142/S179374421100045X %G en %F CML_2011__3_4_577_0
Hrushovski, Ehud; Pillay, Anand. Affine Nash groups over real closed fields. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 577-585. doi : 10.1142/S179374421100045X. http://www.numdam.org/articles/10.1142/S179374421100045X/
[1] M. Artin and B. Mazur, On periodic points, Ann. Math. 81 (1965) 82–99.
[2] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry (Springer, 1998).
[3] A. Conversano and A. Pillay, Connected components of definable groups and o-minimality I, preprint 2011. http://www.maths.leeds.ac.uk/∼pillay/
[4] L. van den Dries, Tame Topology and o-Minimal Structures, LMS Lecture Note Series, Vol. 248 (Cambridge Univ. Press, 1998).
[5] E. Hrushovski and A. Pillay, Groups definable in local fields and pseudofinite fields, Israel J. Math. 85 (1994) 203–262.
[6] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Alg. 53 (1988) 239–255.
[7] M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, Vol. 1269 (Springer, 1987).
[8] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Prentice-Hall, 1974).
Cité par Sources :