A general wavelet-based profile decomposition in the critical embedding of function spaces
Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 387-411.

We characterize the lack of compactness in the critical embedding of functions spaces X ⊂ Y having similar scaling properties in the following terms: a sequence (un)n≥0 bounded in X has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0 such that the remainder converges to zero in Y as the number of functions in the sum and n tend to +∞. Such a decomposition was established by Gérard in [13] for the embedding of the homogeneous Sobolev space X = Ḣs into the Y = Lp in d dimensions with 0 < s = d/2 - d/p, and then generalized by Jaffard in [15] to the case where X is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular, we identify two generic properties on the spaces X and Y that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of X and Y satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces.

Publié le :
DOI : 10.1142/S1793744211000370
Bahouri, Hajer 1 ; Cohen, Albert 1 ; Koch, Gabriel 1

1
@article{CML_2011__3_3_387_0,
     author = {Bahouri, Hajer and Cohen, Albert and Koch, Gabriel},
     title = {A general wavelet-based profile decomposition in the critical embedding of function spaces},
     journal = {Confluentes Mathematici},
     pages = {387--411},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {3},
     year = {2011},
     doi = {10.1142/S1793744211000370},
     language = {en},
     url = {http://www.numdam.org/articles/10.1142/S1793744211000370/}
}
TY  - JOUR
AU  - Bahouri, Hajer
AU  - Cohen, Albert
AU  - Koch, Gabriel
TI  - A general wavelet-based profile decomposition in the critical embedding of function spaces
JO  - Confluentes Mathematici
PY  - 2011
SP  - 387
EP  - 411
VL  - 3
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://www.numdam.org/articles/10.1142/S1793744211000370/
DO  - 10.1142/S1793744211000370
LA  - en
ID  - CML_2011__3_3_387_0
ER  - 
%0 Journal Article
%A Bahouri, Hajer
%A Cohen, Albert
%A Koch, Gabriel
%T A general wavelet-based profile decomposition in the critical embedding of function spaces
%J Confluentes Mathematici
%D 2011
%P 387-411
%V 3
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://www.numdam.org/articles/10.1142/S1793744211000370/
%R 10.1142/S1793744211000370
%G en
%F CML_2011__3_3_387_0
Bahouri, Hajer; Cohen, Albert; Koch, Gabriel. A general wavelet-based profile decomposition in the critical embedding of function spaces. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 387-411. doi : 10.1142/S1793744211000370. http://www.numdam.org/articles/10.1142/S1793744211000370/

[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65 (Academic Press, 1975).

[2] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999) 131–175.

[3] H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D critical Sobolev embedding, J. Funct. Anal. 260 (2011) 208–252.

[4] J. Ben Ameur, Description du défaut de compacité de l’injection de Sobolev sur le groupe de Heisenberg, Bull. Soc. Math. Belgique 15 (2008) 599–624.

[5] H. Brezis and J. M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985) 21–86.

[6] A. Cohen, Numerical Analysis of Wavelet Methods (Elsevier, 2003).

[7] I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992).

[8] R. DeVore, Nonlinear Approximation, Acta Nume. 7 (1998) 51–150.

[9] R. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992) 737–785.

[10] I. Gallagher and P. Gérard, Profile decomposition for the wave equation outside convex obstacles, J. Math. Pures Appl. 80 (2001) 1–49.

[11] I. Gallagher, G. S. Koch and F. Planchon, A profile decomposition approach to the L t (L x 3 ) Navier–Stokes regularity criterion, arXiv:1012.0145.

[12] I. Gallagher, Profile decomposition for solutions of the Navier–Stokes equations, Bull. Soc. Math. France 129 (2001) 285–316.

[13] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var. 3 (1998) 213–233.

[14] S. Ibrahim, Comparaison des ondes linéaires et non linéaires à coefficients variables, Bull. Soc. Math. Belgique 10 (2003) 299–312.

[15] S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal. 161 (1999) 384–396.

[16] C. E. Kenig and G. S. Koch, An alternative approach to the Navier–Stokes equations in critical spaces, Ann. l’Inst. Henri Poincaré, Anal. Non Linéaire, DOI:10.1016/j.anihpc.2010.10.004.

[17] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation, Acta Math. 201 (2008) 147–212.

[18] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, J. Differential Equations 175 (2001) 353–392.

[19] G. Kyriasis, Nonlinear approximation and interpolation spaces, J. Approx. Theory 113 (2001) 110–126.

[20] C. Laurent, On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold, to appear in J. Funct. Anal.

[21] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iber. 1 (1985) 145–201.

[22] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iber. 1 (1985) 45–121.

[23] M. Majdoub, Qualitative study of the critical wave equation with a subcritical per- turbation, J. Math. Anal. Appl. 301 (2005) 354–365.

[24] Y. Meyer, Ondelettes et Opérateurs (Hermann, 1990).

[25] I. Schindler and K. Tintarev, An abstract version of the concentration compactness principle, Rev. Math. Complut. 15 (2002) 417–436.

[26] S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subset of a Sobolev space, Ann. l’IHP Anal. Non linéaire 12 (1995) 319–337.

[27] M. Struwe, A global compactness result for boundary value problems involving lim- iting nonlinearities, Math. Z. 187 (1984) 511–517.

[28] T. Tao, An inverse theorem for the bilinear L2 Strichartz estimate for the wave equa- tion, arXiv:0904.2880.

[29] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. (Johann Ambrosius Barth, 1995).

Cité par Sources :