Transformation du problème de résolution de systèmes de Toeplitz biniveaux à un problème polynomial
Confluentes Mathematici, Tome 3 (2011) no. 2, pp. 253-262.
Publié le :
DOI : 10.1142/S1793744211000357
@article{CML_2011__3_2_253_0,
     author = {Khalil, Houssam and Mourrain, Bernard and Schatzman, Michelle},
     title = {Transformation du probl\`eme de r\'esolution de syst\`emes de {Toeplitz} biniveaux \`a un probl\`eme polynomial},
     journal = {Confluentes Mathematici},
     pages = {253--262},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {2},
     year = {2011},
     doi = {10.1142/S1793744211000357},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1142/S1793744211000357/}
}
TY  - JOUR
AU  - Khalil, Houssam
AU  - Mourrain, Bernard
AU  - Schatzman, Michelle
TI  - Transformation du problème de résolution de systèmes de Toeplitz biniveaux à un problème polynomial
JO  - Confluentes Mathematici
PY  - 2011
SP  - 253
EP  - 262
VL  - 3
IS  - 2
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://www.numdam.org/articles/10.1142/S1793744211000357/
DO  - 10.1142/S1793744211000357
LA  - fr
ID  - CML_2011__3_2_253_0
ER  - 
%0 Journal Article
%A Khalil, Houssam
%A Mourrain, Bernard
%A Schatzman, Michelle
%T Transformation du problème de résolution de systèmes de Toeplitz biniveaux à un problème polynomial
%J Confluentes Mathematici
%D 2011
%P 253-262
%V 3
%N 2
%I World Scientific Publishing Co Pte Ltd
%U http://www.numdam.org/articles/10.1142/S1793744211000357/
%R 10.1142/S1793744211000357
%G fr
%F CML_2011__3_2_253_0
Khalil, Houssam; Mourrain, Bernard; Schatzman, Michelle. Transformation du problème de résolution de systèmes de Toeplitz biniveaux à un problème polynomial. Confluentes Mathematici, Tome 3 (2011) no. 2, pp. 253-262. doi : 10.1142/S1793744211000357. http://www.numdam.org/articles/10.1142/S1793744211000357/

[1] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150 (Springer-Verlag, 1995), with a view toward algebraic geometry.

[2] B. Friedlander, M. Morf, T. Kailath et L. Ljung, New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices, Linear Algebra Appl. 27 (1979) 31–60.

[3] G. Heinig et K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Operator Theory : Advances and Applications, Vol. 13 (Birkhäuser-Verlag, 1984).

[4] T. Kailath, S. Y. Kung et M. Morf, Displacement ranks of matrices and linear equa- tions, J. Math. Anal. Appl. 68 (1979) 395–407.

[5] G. Labahn et T. Shalom, Inversion of Toeplitz matrices with only two standard equa- tions, Linear Algebra Appl. 175 (1992) 143–158.

[6] H. Michael Möller et F. Mora, New constructive methods in classical ideal theory, J. Algebra 100 (1986) 138–178.

[7] B. Mourrain et V. Y. Pan, Multivariate polynomials, duality, and structured matrices, J. Complexity 16 (2000) 110–180, real computation and complexity (Schloss Dagstuhl, 1998).

[8] S. Serra Capizzano et E. Tyrtyshnikov, Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl. 21 (1999) 431–439.

[9] H. Khalil, B. Mourrain and M. Schatzman, Toeplitz and Toeplitz-block-Toeplitz matrices and their correlation with syzygies of polynomials, in Matrix Methods : The- ory, Algorithms, Applications, International seminar matrix methods and operator equations (MM&OE), eds. V. Olshevsky and E. Tyrtyshnikov (World Scientific, 2008), pp. 296–312.

[10] D. Noutsos, S. S. Capizzano and P. Vassalos, Matrix algebra preconditioners for mul- tilevel Toeplitz systems do not insure optimal convergence rate, Theor. Comput. Sci. 315 (2004) 557–579.

[11] E. Tyrtyshnikov, Fast algorithms for block Toeplitz matrices, Sov. J. Numer. Math. Model. 1 (1985) 121–139.

[12] M. Van Barel, G. Heinig and P. Kravanja, A stabilized superfast solver for nonsym- metric Toeplitz systems, SIAM J. Matrix Anal. Appl. 23 (2001) 494–510.

Cité par Sources :