@article{CML_2011__3_2_237_0, author = {Helffer, Bernard}, title = {On pseudo-spectral problems related to a time-dependent model in superconductivity with electric current}, journal = {Confluentes Mathematici}, pages = {237--251}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {2}, year = {2011}, doi = {10.1142/S1793744211000308}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744211000308/} }
TY - JOUR AU - Helffer, Bernard TI - On pseudo-spectral problems related to a time-dependent model in superconductivity with electric current JO - Confluentes Mathematici PY - 2011 SP - 237 EP - 251 VL - 3 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744211000308/ DO - 10.1142/S1793744211000308 LA - en ID - CML_2011__3_2_237_0 ER -
%0 Journal Article %A Helffer, Bernard %T On pseudo-spectral problems related to a time-dependent model in superconductivity with electric current %J Confluentes Mathematici %D 2011 %P 237-251 %V 3 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744211000308/ %R 10.1142/S1793744211000308 %G en %F CML_2011__3_2_237_0
Helffer, Bernard. On pseudo-spectral problems related to a time-dependent model in superconductivity with electric current. Confluentes Mathematici, Tome 3 (2011) no. 2, pp. 237-251. doi : 10.1142/S1793744211000308. http://www.numdam.org/articles/10.1142/S1793744211000308/
[1] Y. Almog, The motion of vortices in superconductors under the action of electric currents, talk at the CRM in Montreal (2008).
[2] Y. Almog, The stability of the normal state of superconductors in the presence of electric currents, Siam J. Math. Anal. 40 (2008) 824–850.
[3] Y. Almog, B. Helffer and X. Pan, Superconductivity near the normal state under the action of electric currents and induced magnetic field in R2 , Commun. Math. Phys. 300 (2010) 147–184.
[4] Y. Almog, B. Helffer and X. Pan, Superconductivity near the normal state in a half- plane under the action of a perpendicular electric current and an induced magnetic field, to appear in Trans. AMS.
[5] P. Bauman, H. Jadallah and D. Phillips, Classical solutions to the time-dependent Ginzburg–Landau equations for a bounded superconducting body in a vacuum, J. Math. Phys. 46 (2005) 095104.
[6] W. Bordeaux-Montrieux, Estimation de résolvante et construction de quasi-modes près du bord du pseudospectre, preprint 2010.
[7] L. Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudo- spectra, J. Operator Theory 47 (2002) 413–429.
[8] B. Davies, Linear Operators and Their Spectra, Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, 2007).
[9] B. Davies, Wild spectral behaviour of anharmonic oscillators, Bull. London Math. Soc. 32 (2000) 432–438.
[10] E. B. Davies and A. B. J. Kuijlaars, Spectral asymptotics of the non-self-adjoint harmonic oscillator, J. London Math. Soc. 70 (2004) 420–426.
[11] N. Dencker, J. Sjöstrand and M. Zworski, Pseudospectra of semiclassical (pseudo)differential operators, Comm. Pure Appl. Math. 57 (2004) 384–415.
[12] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer-Verlag, 2000).
[13] S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, Progress in non linear PDE 77 (Birkhäuser, 2010).
[14] B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, No. 1336 (Springer, 1988).
[15] B. Helffer, The montgomery model revisited, Colloq. Math. 118 (2010) 391–400.
[16] B. Helffer, On spectral problems related to a time dependent model in superconduc- tivity with electric current, Proc. Evian Conference (June, 2009), preprint.
[17] B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, No. 1862 (Springer- Verlag, 2004).
[18] B. Helffer and J. Sjöstrand, From resolvent bounds to semi-groups bounds, in [23].
[19] R. Henry, Analyse spectrale pour l’opérateur de Airy complexe et applications, Master Thesis, Université Paris-Sud (September, 2010).
[20] B. I. Ivlev and N. B. Kopnin, Electric currents and resistive states in thin supercon- ductors, Adv. Phys. 33 (1984) 47–114.
[21] J. Martinet, Sur les propriétés spectrales d’opérateurs non-autoadjoints provenant de la mécanique des fluides. Thèse de doctorat de l’Université Paris-Sud, December, 2009.
[22] J. Sjöstrand, Resolvent estimates for non-self-adjoint operators via semigroups, arXiv: 0906.0094.
[23] J. Sjöstrand, Spectral properties for non self-adjoint differential operators, Lecture notes for Evian, 2009, arXiv:1002.4844v1.
[24] L. N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997) 383–406.
[25] L. N. Trefethen and M. Embree, Spectra and Pseudospectra, A course in three volumes (Princeton Univ. Press, 2005).
[26] C. Villani, Hypocoercivity, Memoirs of the AMS 202 (Amer. Math. Soc., 2009), No. 950.
Cité par Sources :