We undertake a case study of two series of nonclassical Zariski geometries and show that these geometries can be realised as representations of certain noncommutative C*-algebras and introduce a natural limit construction which for each of the two series produces a classical U(1)-gauge field over a two-dimensional Riemann surface.
@article{CML_2010__2_2_265_0, author = {Zilber, Boris}, title = {Noncommutative {Zariski} geometries and their classical limit}, journal = {Confluentes Mathematici}, pages = {265--291}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {2}, number = {2}, year = {2010}, doi = {10.1142/S1793744210000181}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744210000181/} }
TY - JOUR AU - Zilber, Boris TI - Noncommutative Zariski geometries and their classical limit JO - Confluentes Mathematici PY - 2010 SP - 265 EP - 291 VL - 2 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744210000181/ DO - 10.1142/S1793744210000181 LA - en ID - CML_2010__2_2_265_0 ER -
%0 Journal Article %A Zilber, Boris %T Noncommutative Zariski geometries and their classical limit %J Confluentes Mathematici %D 2010 %P 265-291 %V 2 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744210000181/ %R 10.1142/S1793744210000181 %G en %F CML_2010__2_2_265_0
Zilber, Boris. Noncommutative Zariski geometries and their classical limit. Confluentes Mathematici, Tome 2 (2010) no. 2, pp. 265-291. doi : 10.1142/S1793744210000181. http://www.numdam.org/articles/10.1142/S1793744210000181/
[1] B. A. Dubrovin , A. T. Fomenko and S. P. Novikov , Modern Geometry: Methods and Applications ( Springer-Verlag , 1990 ) .
[2] D. Evans, J. Inst. Math. Jussieu 7, 735 (2008), DOI: 10.1017/S1474748008000200.
[3] E. Hrushovski and B. Zilber, J. Amer. Math. Soc. 9, 1 (1996), DOI: 10.1090/S0894-0347-96-00180-4.
[4] A. I. Mal’tsev, Mat. Sb. 28, 567 (1951).
[5] G. Svetlichny, Preparation for gauge theory , arXiv:math-ph/9902027v1 .
[6] B. Zilber , Zariski Geometries , LMS Lecture Notes Series 360 ( Cambridge Univ. Press , 2010 ) .
[7] B. Zilber, Model Theory with Applications to Algebra and Analysis I, LMS Lect Notes 350, eds. H. D. Macpherson, A. Pillay and A. J. Wilkie (Cambridge Univ. Press, 2008) pp. 293–326.
Cité par Sources :