@article{CML_2010__2_1_1_0, author = {Guilloux, Antonin}, title = {Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces}, journal = {Confluentes Mathematici}, pages = {1--35}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {2}, number = {1}, year = {2010}, doi = {10.1142/S1793744210000120}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744210000120/} }
TY - JOUR AU - Guilloux, Antonin TI - Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces JO - Confluentes Mathematici PY - 2010 SP - 1 EP - 35 VL - 2 IS - 1 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744210000120/ DO - 10.1142/S1793744210000120 LA - en ID - CML_2010__2_1_1_0 ER -
%0 Journal Article %A Guilloux, Antonin %T Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces %J Confluentes Mathematici %D 2010 %P 1-35 %V 2 %N 1 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744210000120/ %R 10.1142/S1793744210000120 %G en %F CML_2010__2_1_1_0
Guilloux, Antonin. Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces. Confluentes Mathematici, Tome 2 (2010) no. 1, pp. 1-35. doi : 10.1142/S1793744210000120. http://www.numdam.org/articles/10.1142/S1793744210000120/
[1] Y. Benoist and H. Oh, Effective equidistribution of S-integral points on symmetric varieties , arXiv:0706.1621 .
[2] A. Borel , Linear Algebraic Groups , 2nd edn. , Graduate Texts in Mathematics 126 ( Springer-Verlag , 1991 ) .
[3] S. G. Dani and S. Raghavan, Israel J. Math. 36, 300 (1980), DOI: 10.1007/BF02762053 .
[4] S. R. Dani, Ergod. Th. Dynam. Syst. 2, 139 (1982).
[5] J. Denef, Séminaire de Théorie des Nombres, Paris 1983-84, Progr. Math. 59 (Birkhäuser, 1985) pp. 25-47.
[6] J. S. Ellenberg and A. Venkatesh, Inven. Math. 171, 257 (2008), DOI: 10.1007/s00222-007-0077-7 .
[7] A. Eskin, S. Mozes and N. Shah, Geom. Funct. Anal. 7, 48 (1997), DOI: 10.1007/PL00001616 .
[8] A. Gorodnik, Duke Math. J. 122, 549 (2004), DOI: 10.1215/S0012-7094-04-12234-1 .
[9] A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods, preprint .
[10] A. Gorodnik and B. Weiss, Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal. to appear .
[11] A. Guilloux, Équidistribution dans les espaces homogènes, PhD thesis, Université Paris 11 Orsay, 2007 .
[12] D. Kleinbock and G. Tomanov, Comment. Math. Helv. 82, 519 (2007).
[13] F. Ledrappier, C. R. Acad. Sci. 329, 61 (1999).
[14] F. Ledrappier and M. Pollicott, Bull. Braz. Math. Soc. 36, 143 (2005).
[15] G. A. Margulis , Discrete Subgroups of Semisimple Lie Groups ( Springer , 1991 ) .
[16] F. Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple Lie groups and their lattices, Duke Math. J. to appear .
[17] A. Nogueira, Indag. Math. 13, 103 (2002), DOI: 10.1016/S0019-3577(02)90009-1 .
[18] V. Platonov and A. Rapinchuk , Algebraic Groups and Number Theory ( Academic Press , 1994 ) .
[19] N. A. Shah, Proc. Indian Acad. Sci. (Math. Sci.) 106, 105 (1996), DOI: 10.1007/BF02837164 .
[20] J. Tits, Proc. Symp. Pure Math. 33 (1979) pp. 20-70.
[21] G. Tomanov, Adv. Stud. Pure Math. 26, 265 (2000).
Cité par Sources :