We prove that if all roots of the discrete Wronskian with step 1 of a set of quasi-exponentials with real bases are real, simple and differ by at least 1, then the complex span of this set of quasi-exponentials has a basis consisting of quasi-exponentials with real coefficients. This theorem generalizes the statement of the B. and M. Shapiro conjecture about spaces of polynomials.
The proof is based on the Bethe ansatz method for the XXX model.
@article{CML_2009__1_2_225_0, author = {Mukhin, Evgenii and Tarasov, Vitaly and Varchenko, Aleksandr}, title = {On reality property of {Wronski} maps}, journal = {Confluentes Mathematici}, pages = {225--247}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {1}, number = {2}, year = {2009}, doi = {10.1142/S1793744209000092}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744209000092/} }
TY - JOUR AU - Mukhin, Evgenii AU - Tarasov, Vitaly AU - Varchenko, Aleksandr TI - On reality property of Wronski maps JO - Confluentes Mathematici PY - 2009 SP - 225 EP - 247 VL - 1 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744209000092/ DO - 10.1142/S1793744209000092 LA - en ID - CML_2009__1_2_225_0 ER -
%0 Journal Article %A Mukhin, Evgenii %A Tarasov, Vitaly %A Varchenko, Aleksandr %T On reality property of Wronski maps %J Confluentes Mathematici %D 2009 %P 225-247 %V 1 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744209000092/ %R 10.1142/S1793744209000092 %G en %F CML_2009__1_2_225_0
Mukhin, Evgenii; Tarasov, Vitaly; Varchenko, Aleksandr. On reality property of Wronski maps. Confluentes Mathematici, Tome 1 (2009) no. 2, pp. 225-247. doi : 10.1142/S1793744209000092. http://www.numdam.org/articles/10.1142/S1793744209000092/
[1] Yu. Berest and O. Chalykh, Calogero-Moser correspondence: Trigonometric case, preprint (2007) 1-15 .
[2] A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence , arXiv:hep-th/0604128 .
[3] A. Eremenko and A. Gabrielov, Ann. Math. 155, 105 (2002), DOI: 10.2307/3062151 .
[4] A. Eremenko, Proc. Amer. Math. Soc. 134, 949 (2006), DOI: 10.1090/S0002-9939-05-08048-2 .
[5] P. Etingof, private communication .
[6] P. Etingof and V. Ginzburg, Invent. Math. 147, 243 (2002), DOI: 10.1007/s002220100171 .
[7] E. Horozov and M. Yakimov, The real loci of Calogero-Moser spaces and the Shapiro-Shapiro conjecture , arXiv:0710.5291 .
[8] P. P. Kulish and E. K. Sklyanin, Quantum Spectral Transform Method. Recent Developments, Lect. Notes in Phys. 151 (Springer, 1982) pp. 61-119.
[9] E. Mukhin, V. Tarasov and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, to appear in Ann. Math , [math.AG/0512299] .
[10] E. Mukhin, V. Tarasov and A. Varchenko, J. Stat. Mech. 1 (2006).
[11] E. Mukhin, V. Tarasov and A. Varchenko, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007) pp. 1-31.
[12] E. Mukhin, V. Tarasov and A. Varchenko, Funct. Anal. Math. 1, 55 (2006).
[13] E. Mukhin, V. Tarasov and A. Varchenko, Adv. Math. 218, 216 (2008), DOI: 10.1016/j.aim.2007.11.022 .
[14] J. Ruffo, Y. Sivan, E. Soprunova and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds , [math.AG/0507377] .
[15] F. Sottile, Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60 (Amer. Math. Soc., 2003) pp. 139-179.
[16] G. Wilson, Invent. Math. 133, 1 (1998), DOI: 10.1007/s002220050237 .
Cité par Sources :