On reality property of Wronski maps
Confluentes Mathematici, Tome 1 (2009) no. 2, pp. 225-247.
Publié le :
DOI : 10.1142/S1793744209000092
@article{CML_2009__1_2_225_0,
     author = {Mukhin, Evgenii and Tarasov, Vitaly and Varchenko, Aleksandr},
     title = {On reality property of {Wronski} maps},
     journal = {Confluentes Mathematici},
     pages = {225--247},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {1},
     number = {2},
     year = {2009},
     doi = {10.1142/S1793744209000092},
     language = {en},
     url = {http://www.numdam.org/articles/10.1142/S1793744209000092/}
}
TY  - JOUR
AU  - Mukhin, Evgenii
AU  - Tarasov, Vitaly
AU  - Varchenko, Aleksandr
TI  - On reality property of Wronski maps
JO  - Confluentes Mathematici
PY  - 2009
SP  - 225
EP  - 247
VL  - 1
IS  - 2
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://www.numdam.org/articles/10.1142/S1793744209000092/
DO  - 10.1142/S1793744209000092
LA  - en
ID  - CML_2009__1_2_225_0
ER  - 
%0 Journal Article
%A Mukhin, Evgenii
%A Tarasov, Vitaly
%A Varchenko, Aleksandr
%T On reality property of Wronski maps
%J Confluentes Mathematici
%D 2009
%P 225-247
%V 1
%N 2
%I World Scientific Publishing Co Pte Ltd
%U http://www.numdam.org/articles/10.1142/S1793744209000092/
%R 10.1142/S1793744209000092
%G en
%F CML_2009__1_2_225_0
Mukhin, Evgenii; Tarasov, Vitaly; Varchenko, Aleksandr. On reality property of Wronski maps. Confluentes Mathematici, Tome 1 (2009) no. 2, pp. 225-247. doi : 10.1142/S1793744209000092. http://www.numdam.org/articles/10.1142/S1793744209000092/

[1] Yu. Berest and O. Chalykh, Calogero-Moser correspondence: Trigonometric case, preprint (2007) 1-15 .

[2] A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence , arXiv:hep-th/0604128 .

[3] A. Eremenko and A. Gabrielov, Ann. Math. 155, 105 (2002), DOI: 10.2307/3062151 .

[4] A. Eremenko, Proc. Amer. Math. Soc. 134, 949 (2006), DOI: 10.1090/S0002-9939-05-08048-2 .

[5] P. Etingof, private communication .

[6] P. Etingof and V. Ginzburg, Invent. Math. 147, 243 (2002), DOI: 10.1007/s002220100171 .

[7] E. Horozov and M. Yakimov, The real loci of Calogero-Moser spaces and the Shapiro-Shapiro conjecture , arXiv:0710.5291 .

[8] P. P. Kulish and E. K. Sklyanin, Quantum Spectral Transform Method. Recent Developments, Lect. Notes in Phys. 151 (Springer, 1982) pp. 61-119.

[9] E. Mukhin, V. Tarasov and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, to appear in Ann. Math , [math.AG/0512299] .

[10] E. Mukhin, V. Tarasov and A. Varchenko, J. Stat. Mech. 1 (2006).

[11] E. Mukhin, V. Tarasov and A. Varchenko, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007) pp. 1-31.

[12] E. Mukhin, V. Tarasov and A. Varchenko, Funct. Anal. Math. 1, 55 (2006).

[13] E. Mukhin, V. Tarasov and A. Varchenko, Adv. Math. 218, 216 (2008), DOI: 10.1016/j.aim.2007.11.022 .

[14] J. Ruffo, Y. Sivan, E. Soprunova and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds , [math.AG/0507377] .

[15] F. Sottile, Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60 (Amer. Math. Soc., 2003) pp. 139-179.

[16] G. Wilson, Invent. Math. 133, 1 (1998), DOI: 10.1007/s002220050237 .

Cité par Sources :