We study the class of real-valued functions on convex subsets of ℝn which are computed by the maximum of finitely many affine functionals with integer slopes. We prove several results to the effect that this property of a function can be detected by sampling on small subsets of the domain. In so doing, we recover in a unified way some prior results of the first author (some joint with Liang Xiao). We also prove that a function on ℝ2 is a tropical polynomial if and only if its restriction to each translate of a generic tropical line is a tropical polynomial.
@article{CML_2009__1_1_87_0, author = {Kedlaya, Kiran S. and Tynan, Philip}, title = {Detecting integral polyhedral functions}, journal = {Confluentes Mathematici}, pages = {87--109}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {1}, number = {1}, year = {2009}, doi = {10.1142/S1793744209000031}, language = {en}, url = {http://www.numdam.org/articles/10.1142/S1793744209000031/} }
TY - JOUR AU - Kedlaya, Kiran S. AU - Tynan, Philip TI - Detecting integral polyhedral functions JO - Confluentes Mathematici PY - 2009 SP - 87 EP - 109 VL - 1 IS - 1 PB - World Scientific Publishing Co Pte Ltd UR - http://www.numdam.org/articles/10.1142/S1793744209000031/ DO - 10.1142/S1793744209000031 LA - en ID - CML_2009__1_1_87_0 ER -
%0 Journal Article %A Kedlaya, Kiran S. %A Tynan, Philip %T Detecting integral polyhedral functions %J Confluentes Mathematici %D 2009 %P 87-109 %V 1 %N 1 %I World Scientific Publishing Co Pte Ltd %U http://www.numdam.org/articles/10.1142/S1793744209000031/ %R 10.1142/S1793744209000031 %G en %F CML_2009__1_1_87_0
Kedlaya, Kiran S.; Tynan, Philip. Detecting integral polyhedral functions. Confluentes Mathematici, Tome 1 (2009) no. 1, pp. 87-109. doi : 10.1142/S1793744209000031. http://www.numdam.org/articles/10.1142/S1793744209000031/
[1] N. Bourbaki , Fonctions d’une Variable Réelle ( Hermann , 1958 ) .
[2] K. S. Kedlaya, Alg. Number Th. 1, 269 (2007).
[3] K. S. Kedlaya, Compos. Math. 145, 143 (2009), DOI: 10.1112/S0010437X08003783 .
[4] K. S. Kedlaya, p-adic differential equations (version of 19 Jan 2009), preprint at http://math.mit.edu/kedlaya/papers/ .
[5] K. S. Kedlaya, Good formal structures for flat meromorphic connections, I: Surfaces , arXiv:0811.0190v3 [arXiv] .
[6] K. S. Kedlaya and L. Xiao, Differential modules on p-adic polyannuli, arXiv:0804.1495v4, to appear in J. Institut Math. Jussieu .
[7] R. T. Rockafellar , Convex Analysis (Princeton Univ. Press , 1970) .
[8] D. F. Young, Trans. Amer. Math. Soc. 347, 1323 (1995), DOI: 10.2307/2154812 .
Cité par Sources :