We design a polynomial time algorithm for finding a - regular subgraph in a -regular graph without any induced star (claw-free). A polynomial time algorithm for finding a cubic subgraph in a 4-regular locally connected graph is also given. A family of -regular graphs with an induced star , not containing any -regular subgraph is also constructed.
Mots-clés : polynomial time algorithm, NP-complete, graph, star, regular graph, perfect marching
@article{RO_2008__42_3_291_0, author = {Sridharan, Sriraman}, title = {Polynomial time algorithms for two classes of subgraph problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {291--298}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ro:2008015}, mrnumber = {2444488}, zbl = {1161.05344}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2008015/} }
TY - JOUR AU - Sridharan, Sriraman TI - Polynomial time algorithms for two classes of subgraph problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 291 EP - 298 VL - 42 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2008015/ DO - 10.1051/ro:2008015 LA - en ID - RO_2008__42_3_291_0 ER -
%0 Journal Article %A Sridharan, Sriraman %T Polynomial time algorithms for two classes of subgraph problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 291-298 %V 42 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2008015/ %R 10.1051/ro:2008015 %G en %F RO_2008__42_3_291_0
Sridharan, Sriraman. Polynomial time algorithms for two classes of subgraph problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 3, pp. 291-298. doi : 10.1051/ro:2008015. http://www.numdam.org/articles/10.1051/ro:2008015/
[1] Data structures and algorithms, Addison-Wesley, Reading, Mass (1983). | MR | Zbl
, and ,[2] Graphes, Gauthier-Villars, Paris (1983). | MR | Zbl
,[3] Graph Theory and Applications, Macmillan, London (1978).
and ,[4] Three-regular subgraphs of four regular graphs. J. Graph Theor. 3 (1979) 371-386. | MR | Zbl
, , and ,[5] Paths, trees and flowers. Can. J. Math. 17 (1965) 449-467. | MR | Zbl
,[6] Computers and Intractability: A guide to the theory of NP-Completeness, W.H. Freeman and company, NY (1979). | MR | Zbl
and ,[7] A note on matchings in graphs. Cahiers du Centre d'Etudes de Recherche Opérationnelle 17 (1975) 257-260. | MR | Zbl
,[8] On a generalization of Berge-Sauer conjecture, Combinatorics and Applications, edited by K.S. Vijayan and N.M. Singhi, Indian Stat. Institute, Calcutta (1982) 261-264. | MR | Zbl
and ,[9] A note on regular subgraphs of regular graphs. J. Math. Phys. Sci. 28 (5) (1994) 237-241. | MR | Zbl
,[10] Regular subgraphs of regular graphs. Soviet. Math. Dokl. Vol. 26 (1982). | Zbl
,[11] The factorization of linear graphs. J. London Math. Soc. 22 (1947) 107-111. | MR | Zbl
,Cité par Sources :