Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems
RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 2, pp. 87-103.

In this paper, which is an extension of [4], we first show the existence of solutions to a class of Min Sup problems with linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel problems. Furthermore, for such a class of bilevel problems, we give a relationship with appropriate d.c. problems concerning the existence of solutions.

DOI : 10.1051/ro:2008012
Classification : 49K35, 90C47, 91A44, 46N10
Mots-clés : $\operatorname{Min}\operatorname{Sup}$ problems, variational convergence, bilevel programming, d.c. programming
@article{RO_2008__42_2_87_0,
     author = {Aboussoror, Abdelmalek and Mansouri, Abdelatif},
     title = {Existence of solutions to weak nonlinear bilevel problems via {MinSup} and d.c. problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {87--103},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {2},
     year = {2008},
     doi = {10.1051/ro:2008012},
     mrnumber = {2431394},
     zbl = {1151.49010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro:2008012/}
}
TY  - JOUR
AU  - Aboussoror, Abdelmalek
AU  - Mansouri, Abdelatif
TI  - Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2008
SP  - 87
EP  - 103
VL  - 42
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro:2008012/
DO  - 10.1051/ro:2008012
LA  - en
ID  - RO_2008__42_2_87_0
ER  - 
%0 Journal Article
%A Aboussoror, Abdelmalek
%A Mansouri, Abdelatif
%T Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2008
%P 87-103
%V 42
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro:2008012/
%R 10.1051/ro:2008012
%G en
%F RO_2008__42_2_87_0
Aboussoror, Abdelmalek; Mansouri, Abdelatif. Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 2, pp. 87-103. doi : 10.1051/ro:2008012. http://www.numdam.org/articles/10.1051/ro:2008012/

[1] A. Aboussoror and P. Loridan, Existence of Solutions to Two-Level Optimization Problems with Nonunique Lower-Level Solutions. J. Math. Anal. Appl. 254 (2001) 348-357. | MR | Zbl

[2] A. Aboussoror, Weak Bilevel Programming Problems: Existence of Solutions. Adv. Math. Res. 1 (2002) 83-92. | MR | Zbl

[3] A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: existence of solutions via a penalty method. J. Mat. Anal. Appl. 304 (2005) 399-408. | MR | Zbl

[4] A. Aboussoror and A. Mansouri, Sufficient conditions for Min Sup problems and application to bilevel programs, in Proc CIRO'05, IV Conférence Internationale en Recherche Opérationnelle, Théorie et Applications 1 (2005) 99-107.

[5] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis1984). | MR | Zbl

[6] H. Attouch, Variational Convergences for Functions and Operators. Pitman, Boston (1984). | MR | Zbl

[7] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-Linear Parametric Optimization. Akademie-Verlag, Berlin (1982). | Zbl

[8] E. De Giorgi and T. Franzoni, Su un Tipo di Convergenza Variazionale. Atti Accad. Naz. Lincei Sci. Fi. Mat. Natur. 58 (1975) 842-850. | MR | Zbl

[9] S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52 (2003) 333-359. | MR | Zbl

[10] A.L. Dontchev and Zolezzi, Well-Posed Optimization Problems. Lect. Notes in Mathematics. Springer-Verlag, Berlin. 1543 (1993). | MR | Zbl

[11] J.E. Falk, A linear Max-Min problem. Math. Program. 5 (1973) 169-188. | MR | Zbl

[12] M.B. Lignola and J. Morgan, Topological existence and stability for Min-Sup problems. J. Math. Anal. Appl. 151 (1990) 164-180. | MR | Zbl

[13] M.B. Lignola and J. Morgan, Semicontinuities of marginal functions in a sequential setting. Optimization 24 (1994) 241-252. | MR | Zbl

[14] P. Loridan and J. Morgan, Approximate Solutions for Two-Level Optimization Problems, in Trends in Mathematical Optimization, International Series of Numerical Mathematics, edited by K. Hoffman, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, Birkhäuser Verlag, Basel 84 (1988) 181-196. | MR | Zbl

[15] P. Loridan and J. Morgan, On Strict ϵ-Solutions for Two-Level Optimization Problem, in Operations Research Proceedings of the International Conference on Operations Research 90, Vienna, edited by W. Buhler, G. Feichtinger, F. Hartl, F.J. Radermacher and P. Stahly, Springer-Verlag, Berlin (1992) 165-172. | MR | Zbl

[16] R. Lucchetti, F. Mignanego and G. Pieri, Existence theorem of equilibrium points in Stackelberg games with constraints. Optimization 18 (1987) 857-866. | MR | Zbl

[17] C. Michelot, Caractérisation des minima locaux des fonctions de la classe D.C., Technical Note, University of Dijon (1987).

[18] Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to d.c. programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22 (1997) 289-355. | MR | Zbl

[19] R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton, NJ (1970). | MR | Zbl

[20] K. Shimizu and E. Aiyoshi, Necessary Conditions for Min-Max Problems and algorithms by a relaxation procedure. IEEE Transactions on Automatic Control: AC-25(1) (1980) 62-66. | MR | Zbl

Cité par Sources :