We present an inexact interior point proximal method to solve linearly constrained convex problems. In fact, we derive a primal-dual algorithm to solve the KKT conditions of the optimization problem using a modified version of the rescaled proximal method. We also present a pure primal method. The proposed proximal method has as distinctive feature the possibility of allowing inexact inner steps even for Linear Programming. This is achieved by using an error criterion that bounds the subgradient of the regularized function, instead of using -subgradients of the original objective function. Quadratic convergence for LP is also proved using a more stringent error criterion.
Mots clés : interior proximal methods, linearly constrained convex problems
@article{RO_2007__41_4_367_0, author = {Silva, Paulo J. S. and Humes Jr., Carlos}, title = {Rescaled proximal methods for linearly constrained convex problems}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {367--380}, publisher = {EDP-Sciences}, volume = {41}, number = {4}, year = {2007}, doi = {10.1051/ro:2007032}, mrnumber = {2361291}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2007032/} }
TY - JOUR AU - Silva, Paulo J. S. AU - Humes Jr., Carlos TI - Rescaled proximal methods for linearly constrained convex problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2007 SP - 367 EP - 380 VL - 41 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2007032/ DO - 10.1051/ro:2007032 LA - en ID - RO_2007__41_4_367_0 ER -
%0 Journal Article %A Silva, Paulo J. S. %A Humes Jr., Carlos %T Rescaled proximal methods for linearly constrained convex problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2007 %P 367-380 %V 41 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2007032/ %R 10.1051/ro:2007032 %G en %F RO_2007__41_4_367_0
Silva, Paulo J. S.; Humes Jr., Carlos. Rescaled proximal methods for linearly constrained convex problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 4, pp. 367-380. doi : 10.1051/ro:2007032. http://www.numdam.org/articles/10.1051/ro:2007032/
[1] An inteirior proximal method for convex linearly constrained problems. Math. Program. 71 (1995) 77-100. | Zbl
and ,[2] Interior proximal and multiplier methods based on second order homogeneous kernels. Math. Oper. Res. 24 (1999) 645-668. | Zbl
, and ,[3] A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12 (1999) 31-40. | Zbl
, and ,[4] The proximal minimization algorithms with D-functions. J. Optim. Theor. App. 73 (1992) 451-464. | Zbl
and ,[5] Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Math. Oper. Res. 18 (1993) 202-226. | Zbl
,[6] Path-following methods for linear programming. SIAM Rev. 34 (1992) 167-224. | Zbl
,[7] Convergence rate analysis of nonquadratic proximal methods for convex and linear programming. Math. Oper. Res. 20 (1995) 657-677. | Zbl
and ,[8] Entropy-like proximal methods in covex programming. Math. Oper. Res. 19 (1994) 790-814. | Zbl
, and ,[9] Regularisation d'inequations variationelles par approximations successives. Rev. Fr. Inf. Rech. Oper. (1970) 154-159. | Numdam | Zbl
,[10] Determination approch d'un point fixe d'une application pseudo-contractante. C.R. Acad. Sci. Paris 274A (1972) 163-165. | Zbl
,[11] Convex Analysis. Princeton University Press (1970). | MR | Zbl
,[12] Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 887-898. | Zbl
,[13] Double regularizations proximal methods, with complementarity applications. Comput. Optim. Appl. 33 (2006) 115-116. | Zbl
and ,[14] Rescaling and stepsize selection in proximal methods using generalized distances. SIAM J. Optim. 12 (2001) 238-261. | Zbl
, and ,[15] Entropic proximal methods with aplications to nonlinear programming. Math. Oper. Res. 17 (1992) 670-690. | Zbl
,[16] Convergence of proximal-like algorithms. SIAM J. Optim. 7 (1997) 1069-1083. | Zbl
,[17] On the convergence of the exponential multiplier method for convex programming. Math. Program. 60 (1993) 1-19. | Zbl
and ,[18] Wright, Primal-Dual Interior-Point Methods. SIAM (1997). | MR | Zbl
[19] An infeasible interior proximal method for convex programming problems with linear constraints. Journal Nonlinear Convex Analysis 2 (2001) 139-156. | Zbl
, , and ,Cité par Sources :