The polytope of m-subspaces of a finite affine space
RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 317-344.

The m-subspace polytope is defined as the convex hull of the characteristic vectors of all m-dimensional subspaces of a finite affine space. The particular case of the hyperplane polytope has been investigated by Maurras (1993) and Anglada and Maurras (2003), who gave a complete characterization of the facets. The general m-subspace polytope that we consider shows a much more involved structure, notably as regards facets. Nevertheless, several families of facets are established here. Then the group of automorphisms of the m-subspace polytope is completely described and the adjacency of vertices is fully characterized.

DOI : 10.1051/ro:2007026
Classification : 51A30, 52B12, 90C27
Mots-clés : convex polytope, finite affine space, $m$-subspace polytope
@article{RO_2007__41_3_317_0,
     author = {Christophe, Julie and Doignon, Jean-Paul},
     title = {The polytope of $m$-subspaces of a finite affine space},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {317--344},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {3},
     year = {2007},
     doi = {10.1051/ro:2007026},
     mrnumber = {2348086},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro:2007026/}
}
TY  - JOUR
AU  - Christophe, Julie
AU  - Doignon, Jean-Paul
TI  - The polytope of $m$-subspaces of a finite affine space
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2007
SP  - 317
EP  - 344
VL  - 41
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro:2007026/
DO  - 10.1051/ro:2007026
LA  - en
ID  - RO_2007__41_3_317_0
ER  - 
%0 Journal Article
%A Christophe, Julie
%A Doignon, Jean-Paul
%T The polytope of $m$-subspaces of a finite affine space
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2007
%P 317-344
%V 41
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro:2007026/
%R 10.1051/ro:2007026
%G en
%F RO_2007__41_3_317_0
Christophe, Julie; Doignon, Jean-Paul. The polytope of $m$-subspaces of a finite affine space. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 317-344. doi : 10.1051/ro:2007026. http://www.numdam.org/articles/10.1051/ro:2007026/

[1] O. Anglada, Quelques polyèdres combinatoires bien décrits. Ph.D. thesis, Université de la Méditerranée Aix-Marseille II, Faculté des Sciences de Luminy (2004).

[2] O. Anglada and J.F. Maurras, Enveloppe convexe des hyperplans d'un espace affine fini. RAIRO Oper. Res. 37 (2003) 213-219. | Numdam | Zbl

[3] E. Artin, Geometric Algebra. Wiley Classics Library. John Wiley & Sons Inc., New York (1988). | MR | Zbl

[4] A. Beutelspacher and U. Rosenbaum, Projective Geometry: from foundations to applications. Cambridge University Press, Cambridge (1998). | MR | Zbl

[5] G. Bolotashvili, M. Kovalev, and E. Girlich, New facets of the linear ordering polytope. SIAM J. Discrete Math. 12 (1999) 326-336. | Zbl

[6] A. Brøndsted, An Introduction to Convex Polytopes. Graduate Texts in Mathematics, vol. 90. Springer-Verlag, New York (1983). | MR | Zbl

[7] T. Christof, PORTA - a POlyhedron Representation Transformation Algorithm. version 1.3.2 (1999), written by T. Christof, maintained by A. Loebel and M. Stoer, available at http://www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/.

[8] J. Christophe, Le polytope des sous-espaces d'un espace affin fini. Ph.D. thesis, Université Libre de Bruxelles, 2006. Accessible on line at http://theses.ulb.ac.be:8000/ETD-db/collection/available/ULBetd-01222007-165129/ro.html

[9] J. Christophe, J.-P. Doignon and S. Fiorini, The biorder polytope. Order 21 (2004) 61-82. | Zbl

[10] J.-P Doignon and M. Regenwetter, An approval-voting polytope for linear orders. J. Math. Psych. 41 (1997) 171-188. | MR | Zbl

[11] E. Gawrilow and M. Joswig, POLYMAKE: a software package for analyzing convex polytopes. Version 1.4 (Dec. 2000), available at url http://www.math-tu-berlin.de/diskregeom/polymake/. | Zbl

[12] B. Grünbaum, Convex Polytopes, Graduate Texts in Mathematics, vol. 221. Springer-Verlag, New York, second edition (2003). | MR | Zbl

[13] J.F. Maurras, The line-polytope of a finite affine plane. Discrete Math. 115 (1993) 283-286. | MR | Zbl

[14] J.H. Van Lint and R.M. Wilson, A Course in Combinatorics. Cambridge University Press, Cambridge, UK (1992). | MR | Zbl

[15] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer-Verlag (1995). | MR | Zbl

Cité par Sources :