This paper presents a feasible primal algorithm for linear semidefinite programming. The algorithm starts with a strictly feasible solution, but in case where no such a solution is known, an application of the algorithm to an associate problem allows to obtain one. Finally, we present some numerical experiments which show that the algorithm works properly.
Mots-clés : linear programming, semidefinite programming, interior point methods
@article{RO_2007__41_1_49_0, author = {Benterki, Djamel and Crouzeix, Jean-Pierre and Merikhi, Bachir}, title = {A numerical feasible interior point method for linear semidefinite programs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {49--59}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/ro:2007006}, mrnumber = {2310539}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2007006/} }
TY - JOUR AU - Benterki, Djamel AU - Crouzeix, Jean-Pierre AU - Merikhi, Bachir TI - A numerical feasible interior point method for linear semidefinite programs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2007 SP - 49 EP - 59 VL - 41 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2007006/ DO - 10.1051/ro:2007006 LA - en ID - RO_2007__41_1_49_0 ER -
%0 Journal Article %A Benterki, Djamel %A Crouzeix, Jean-Pierre %A Merikhi, Bachir %T A numerical feasible interior point method for linear semidefinite programs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2007 %P 49-59 %V 41 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2007006/ %R 10.1051/ro:2007006 %G en %F RO_2007__41_1_49_0
Benterki, Djamel; Crouzeix, Jean-Pierre; Merikhi, Bachir. A numerical feasible interior point method for linear semidefinite programs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 49-59. doi : 10.1051/ro:2007006. http://www.numdam.org/articles/10.1051/ro:2007006/
[1] Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13-51. | Zbl
,[2] Primal-dual interior point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8 (1998) 746-768. | Zbl
, and ,[3] Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10 (2000) 443-461. | Zbl
, and ,[4] The projective method for solving linear matrix inequalities. Math. Program. 77 (1997) 163-190. | Zbl
, ,[5] An interior point method for semidefinite programming. SIAM J. Optim. 6 (1996) 342-361. | Zbl
, , and ,[6] Interior point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86-125. | Zbl
, and ,[7] Interior point polynomial algorithms in convex programming. SIAM Stud. Appl. Math. 13, Society for Industrial and applied Mathematics (SIAM), Philadelphia, PA (1994). | MR | Zbl
and ,[8] Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic problems. Math. Program. 72 (1996) 273-289. | Zbl
and ,[9] Semidefinite programming. Math. Program. 77 (1997) 105-109. | Zbl
and ,[10] Strong duality for semidefinite programming. SIAM J. Optim. 7 (1997) 641-662. | Zbl
, and ,[11] Positive definite programming. SIAM Rev. 38 (1996) 49-95. | Zbl
and ,[12] G.-P.-H. Styan, Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980) 471-506. | Zbl
,[13] http://infohost.nmt.edu/ sdplib/
Cité par Sources :