In this paper we present the image space analysis, based on a general separation scheme, with the aim of studying lagrangian duality and shadow prices in Vector Optimization. Two particular kinds of separation are considered; in the linear case, each of them is applied to the study of sensitivity analysis, and it is proved that the derivatives of the perturbation function can be expressed in terms of vector Lagrange multipliers or shadow prices.
@article{RO_2004__38_4_305_0, author = {Pellegrini, Letizia}, title = {On dual vector optimization and shadow prices}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {305--317}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/ro:2004025}, mrnumber = {2178083}, zbl = {1114.90117}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2004025/} }
TY - JOUR AU - Pellegrini, Letizia TI - On dual vector optimization and shadow prices JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 305 EP - 317 VL - 38 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2004025/ DO - 10.1051/ro:2004025 LA - en ID - RO_2004__38_4_305_0 ER -
Pellegrini, Letizia. On dual vector optimization and shadow prices. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 4, pp. 305-317. doi : 10.1051/ro:2004025. http://www.numdam.org/articles/10.1051/ro:2004025/
[1] Linear multicriteria sensitivity and shadow costs. Optimization 26 (1992) 115-127. | Zbl
and ,[2] Multicriteria Optimization. Springer, Lect. Not. Econom. Math. Syst. 491 (2000). | MR | Zbl
,[3] Theorems of the alternative, quadratic programs and complementarity problems, in Variational Inequalities and Complementarity Problems, edited by R.W. Cottle et al. J. Wiley (1980) 151-186. | Zbl
,[4] Theorems of the alternative and optimality conditions. J. Optim. Theor. Appl. 42 (1984) 331-365. | Zbl
,[5] On the theory of vector optimization and variational inequalities. Image space analysis and separation, in Vector Variational Inequalities and Vector Equilibria. Mathematical Theories, edited by F. Giannessi. Kluwer Acad. Publ. (2000) 153-215. | Zbl
, and ,[6] On some relations between a dual pair of multiple objective linear programs. Z. Oper. Res. 22 (1978) 33-41. | Zbl
,[7] Nonlinear Programming. SIAM Classics Appl. Math. 10 (1994). | MR | Zbl
,[8] On Lagrangian duality in vector optimization. Optimization. Submitted.
,[9] Sensitivity analysis in multiobjective optimization. J. Optim. Theor. Appl. 56 (1988) 479-499. | Zbl
,[10] Duality for vector optimization of set valued functions. J. Math. Anal. Appl. 201 (1996) 212-225. | Zbl
,Cité par Sources :