Product form solution for g-networks with dependent service
RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 105-119.

We consider a G-network with Poisson flow of positive customers. Each positive customer entering the network is characterized by a set of stochastic parameters: customer route, the length of customer route, customer volume and his service length at each route stage as well. The following node types are considered: (0) an exponential node with c n servers, infinite buffer and FIFO discipline; (1) an infinite-server node; (2) a single-server node with infinite buffer and LIFO PR discipline; (3) a single-server node with infinite buffer and PS discipline. Negative customers arriving at each node also form a Poisson flow. A negative customer entering a node with k customers in service, with probability 1/k chooses one of served positive customer as a “target”. Then, if the node is of a type 0 the negative customer immediately “kills” (displaces from the network) the target customer, and if the node is of types 1-3 the negative customer with given probability depending on parameters of the target customer route kills this customer and with complementary probability he quits the network with no service. A product form for the stationary probabilities of underlying Markov process is obtained.

DOI : 10.1051/ro:2004015
Bocharov, Pavel  ; D'Apice, Ciro  ; Gavrilov, Evgeny  ; Pechinkin, Alexandre 1

1 Institute of Informatics Problems Russian Academy of Sciences Moscow, Russia
@article{RO_2004__38_2_105_0,
     author = {Bocharov, Pavel and D'Apice, Ciro and Gavrilov, Evgeny and Pechinkin, Alexandre},
     title = {Product form solution for g-networks with dependent service},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {105--119},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {2},
     year = {2004},
     doi = {10.1051/ro:2004015},
     zbl = {1092.90010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro:2004015/}
}
TY  - JOUR
AU  - Bocharov, Pavel
AU  - D'Apice, Ciro
AU  - Gavrilov, Evgeny
AU  - Pechinkin, Alexandre
TI  - Product form solution for g-networks with dependent service
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2004
SP  - 105
EP  - 119
VL  - 38
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro:2004015/
DO  - 10.1051/ro:2004015
LA  - en
ID  - RO_2004__38_2_105_0
ER  - 
%0 Journal Article
%A Bocharov, Pavel
%A D'Apice, Ciro
%A Gavrilov, Evgeny
%A Pechinkin, Alexandre
%T Product form solution for g-networks with dependent service
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2004
%P 105-119
%V 38
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro:2004015/
%R 10.1051/ro:2004015
%G en
%F RO_2004__38_2_105_0
Bocharov, Pavel; D'Apice, Ciro; Gavrilov, Evgeny; Pechinkin, Alexandre. Product form solution for g-networks with dependent service. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 105-119. doi : 10.1051/ro:2004015. http://www.numdam.org/articles/10.1051/ro:2004015/

[1] G.P. Basharin, P.P. Bocharov and Ya. A. Kogan, Analysis of Queues in Computer Networks. Theory and Design Methods, Moscow, Nauka (1989) (in Russian). | MR

[2] G.P. Basharin and A.L. Tolmachev, The theory of queueing networks and its application to analysis of information-computer systems, in Itogi Nauki i Tekhniki. Teoria Veroyatnostei, Mat. Statistika, Teoret. Kibertetika 21 3-120. Moscow, VINITI (1983). | MR | Zbl

[3] F. Baskett, K.M. Chandy, R.R. Muntz and F.G. Palacios, Open, closed and mixed networks of queues with different classes of customers. J. ACM 22 (1975) 248-260. | MR | Zbl

[4] P.P. Bocharov and V.M. Vishnevskii, G-networks: development of the theory of multiplicative networks. Autom. Remote Control 64 (2003) 714-739. | MR | Zbl

[5] J. Bourrely and E. Gelenbe, Mémoires associatives: évaluation et architectures. C.R. Acad. Sci. Paris II 309 (1989) 523-526.

[6] C. Cramer and E. Gelenbe, Video quality and traffic QoS in learning-based subsampled and receiver-interpolated video sequences. IEEE J. on Selected Areas in Communications 18 (2000) 150-167.

[7] Y. Feng and E. Gelenbe, Adaptive object tracking and video compression. Network and Information Systems J. 1 (1999) 371-400.

[8] E. Gelenbe, Queuing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 656-663. | MR | Zbl

[9] J.-M. Fourneau, E. Gelenbe and R. Suros, G-networks with multiple classes of positive and negative customers. Theoret. Comp. Sci. 155 (1996) 141-156. | MR | Zbl

[10] E. Gelenbe, Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. C.R. Acad. Sci. Paris II 309 (1989) 979-982. | MR

[11] E. Gelenbe, Random neural networks with positive and negative signals and product form solution. Neural Comput. 1 (1989) 502-510.

[12] E. Gelenbe, Réseaux neuronaux aléatoires stables. C.R. Acad. Sci. II 310 (1990) 177-180. | MR

[13] E. Gelenbe, Stable random neural networks. Neural Comput. 2 (1990) 239-247. | MR

[14] E. Gelenbe, G-networks with instantaneous customer movement. J. Appl. Probab. 30 (1993) 742-748. | MR | Zbl

[15] E. Gelenbe, G-Networks with signals and batch removal. Probab. Eng. Inform. Sci. 7 (1993) 335-342.

[16] E. Gelenbe, Learning in the recurrent random network. Neural Comput. 5 (1993) 154-164.

[17] E. Gelenbe, G-networks: An unifying model for queuing networks and neural networks. Ann. Oper. Res. 48 (1994) 433-461. | MR | Zbl

[18] E. Gelenbe, The first decade of G-networks. Eur. J. Oper. Res. 126 (2000) 231-232.

[19] E. Gelenbe and J.M. Fourneau, Random neural networks with multiple classes of signals. Neural Comput. 11 (1999) 953-963.

[20] E. Gelenbe and J.-M. Fourneau, G-Networks with resets. Perform. Eval. 49 (2002) 179-192, also in Proc. IFIP WG 7.3/ACM-SIGMETRICS Performance '02 Conf., Rome, Italy (2002). | Zbl

[21] E. Gelenbe, P. Glynn and K. Sigman, Queues with negative arrivals. J. Appl. Probab. 28 (1991) 245-250. | MR | Zbl

[22] E. Gelenbe and K. Hussain, Learning in the multiple class random neural network. IEEE Trans. on Neural Networks 13 (2002) 1257-1267.

[23] E. Gelenbe and A. Labed, G-networks with multiple classes of signals and positive customers. Eur. J. Oper. Res. 108 (1998) 293-305. | Zbl

[24] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems. New York, London Academic Press (1980). | MR | Zbl

[25] E. Gelenbe and G. Pujolle, Introduction to Queueing Networks. New York, Wiley (1998). | MR | Zbl

[26] E. Gelenbe and M. Schassberger, Stability of product form G-Networks. Probab. Eng. Inform. Sci. 6 (1992) 271-276. | Zbl

[27] E. Gelenbe, E. Seref and Z. Xu, Simulation with learning agents. Proc. of the IEEE 89 (2001) 148-157.

[28] E. Gelenbe and H. Shachnai, On G-networks and resource allocation in multimedia systems. Eur. J. Oper. Res. 126 (2000) 308-318. | MR | Zbl

[29] J.R. Jackson, Networks of waiting lines. Oper. Res. 15 (1957) 234-265. | MR

[30] J.R. Jackson, Jobshop-like queueing systems. Manage. Sci. 10 (1963) 131-142.

[31] F.P. Kelly, Reversibility and Stochastic Networks. Chichester, Wiley (1979). | MR | Zbl

[32] D. Kouvatsos, Entropy maximisation and queueing network models. Ann. Oper. Res. 48 (1994) 63-126. | Zbl

[33] A.V. Pechinkin and V.V. Rykov, Product form for open queueing networks with dependent service times, in Proc. Distributed Computer Communication Networks. Theory and Applications, Moscow: Institute for Information Transmission Problems RAS (1977) 171-178.

[34] M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis. New York, Addison Wesley (1987).

[35] N.M. Van Dijk, Queueing Networks and Product Forms. New York, Wiley (1993). | MR

[36] V.M. Vishnevskii, Theoretical Foundations of Computer Network Design. Moscow, Tekhnosfera 2003 (in Russian).

Cité par Sources :