@article{RO_2003__37_4_249_0, author = {Faye, Alain and Boyer, Olivier}, title = {Construction de facettes pour le polytope du sac-\`a-dos quadratique en 0-1}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {249--271}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/ro:2004008}, mrnumber = {2064601}, zbl = {1092.90030}, language = {fr}, url = {http://www.numdam.org/articles/10.1051/ro:2004008/} }
TY - JOUR AU - Faye, Alain AU - Boyer, Olivier TI - Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1 JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2003 SP - 249 EP - 271 VL - 37 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2004008/ DO - 10.1051/ro:2004008 LA - fr ID - RO_2003__37_4_249_0 ER -
%0 Journal Article %A Faye, Alain %A Boyer, Olivier %T Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1 %J RAIRO - Operations Research - Recherche Opérationnelle %D 2003 %P 249-271 %V 37 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2004008/ %R 10.1051/ro:2004008 %G fr %F RO_2003__37_4_249_0
Faye, Alain; Boyer, Olivier. Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1. RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 4, pp. 249-271. doi : 10.1051/ro:2004008. http://www.numdam.org/articles/10.1051/ro:2004008/
[1] A tight linearization and an algorithm for zero-one quadratic programming problem. Manage. Sci. 32 (1986) 1274-1289. | MR | Zbl
et ,[2] Linear programming for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92 (1996) 310-325. | Zbl
et ,[3] A new upper bound for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 112 (1999) 664-672. | Zbl
, et ,[4] Best network flow bounds for the quadratic knapsack problem. Lect. Notes Math. 1403 (1986) 226-235. | Zbl
, et ,[5] Decomposition and linearization for 0-1 quadratic programming. Ann. Oper. Res. 99 (2000) 79-93. | MR | Zbl
, et ,[6] An O(nlogn) procedure for identifying facets of the knapsack polytope. Oper. Res. Lett. 31 (2003) 211-218. | MR | Zbl
, et ,[7] A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim. 4 (2000) 197-215. | MR | Zbl
, et ,[8] Min-cut clustering. Math. Program. 62 (1993) 133-152. | MR | Zbl
, et ,[9] Cardinality constrained Boolean quadratic polytope. Discrete Appl. Math. 79 (1997) 137-154. | MR | Zbl
,[10] Lagrangean methods for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92 (1996) 326-341. | Zbl
et ,[11] Integer and Combinatorial Optimization. Wiley Intersci. Ser. Discrete Math. Optim. (1988). | MR | Zbl
et ,[12] The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45 (1989) 139-172. | MR | Zbl
,[13] Valid inequalities and facets of the quadratic 0-1 knapsack polytope. Rutcor Research Report 16-97 (1997) 11 p.
,[14] Lifting results for the quadratic 0-1 knapsack polytope. Rutcor Research Report 17-97 (1997) 27 p.
,[15] Computing Lower Bounds for the Quadratic assignment problem with an interior point algorithm for linear programming. Oper. Res. 43 (1995) 781-791. | MR | Zbl
, et ,[16] Résolution du problème de sac-à-dos quadratique en variables bivalentes. Thèse de doctorat du CNAM Paris (2000).
,[17] Lifting the facets of zero-one polytopes. Math. Program. 15 (1978) 268-277. | MR | Zbl
,Cité par Sources :